Suppr超能文献

利用邻居测序技术从单细胞数据中重建物理细胞相互作用网络。

Reconstructing physical cell interaction networks from single-cell data using Neighbor-seq.

机构信息

Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA.

出版信息

Nucleic Acids Res. 2022 Aug 12;50(14):e82. doi: 10.1093/nar/gkac333.

Abstract

Cell-cell interactions are the fundamental building blocks of tissue organization and multicellular life. We developed Neighbor-seq, a method to identify and annotate the architecture of direct cell-cell interactions and relevant ligand-receptor signaling from the undissociated cell fractions in massively parallel single cell sequencing data. Neighbor-seq accurately identifies microanatomical features of diverse tissue types such as the small intestinal epithelium, terminal respiratory tract, and splenic white pulp. It also captures the differing topologies of cancer-immune-stromal cell communications in pancreatic and skin tumors, which are consistent with the patterns observed in spatial transcriptomic data. Neighbor-seq is fast and scalable. It draws inferences from routine single-cell data and does not require prior knowledge about sample cell-types or multiplets. Neighbor-seq provides a framework to study the organ-level cellular interactome in health and disease, bridging the gap between single-cell and spatial transcriptomics.

摘要

细胞间相互作用是组织和多细胞生命的基本构建块。我们开发了 Neighbor-seq 方法,该方法可从大规模平行单细胞测序数据中的未解离细胞部分中识别和注释直接细胞-细胞相互作用的结构以及相关的配体-受体信号。Neighbor-seq 能够准确识别多种组织类型的微观解剖特征,如小肠上皮、终末呼吸道和脾脏白髓。它还可以捕获胰腺和皮肤肿瘤中癌症-免疫-基质细胞通讯的不同拓扑结构,这些结构与空间转录组数据中观察到的模式一致。Neighbor-seq 快速且可扩展。它可以从常规的单细胞数据中进行推断,并且不需要有关样本细胞类型或多联体的先验知识。Neighbor-seq 提供了一个研究健康和疾病中器官水平细胞相互作用组的框架,弥合了单细胞和空间转录组学之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab45/9371920/a2b7d002a999/gkac333figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验