Suppr超能文献

意识障碍的个性化模型揭示了连通性和局部参数在诊断和预后中的互补作用。

Personalized models of disorders of consciousness reveal complementary roles of connectivity and local parameters in diagnosis and prognosis.

作者信息

Zonca Lou, Escrichs Anira, Patow Gustavo, Manasova Dragana, Sanz-Perl Yonathan, Annen Jitka, Gosseries Olivia, Laureys Steven, Sitt Jacobo Diego, Deco Gustavo

机构信息

Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain.

Girona University, Girona, Spain.

出版信息

PLoS One. 2025 Sep 2;20(9):e0328219. doi: 10.1371/journal.pone.0328219. eCollection 2025.

Abstract

The study of disorders of consciousness (DoC) is very complex because patients suffer from a wide variety of lesions, affected brain mechanisms, different severity of symptoms, and are unable to communicate. Combining neuroimaging data and mathematical modeling can help us quantify and better describe some of these alterations. The goal of this study is to provide a new analysis and modeling pipeline for fMRI data leading to new diagnosis and prognosis biomarkers at the individual patient level. To do so, we project patients' fMRI data into a low-dimension latent-space. We define the latent space's dimension as the smallest dimension able to maintain the complexity, non-linearities, and information carried by the data, according to different criteria that we detail in the first part. This dimensionality reduction procedure then allows us to build biologically inspired latent whole-brain models that can be calibrated at the single-patient level. In particular, we propose a new model inspired by the regulation of neuronal activity by astrocytes in the brain. This modeling procedure leads to two types of model-based biomarkers (MBBs) that provide novel insight at different levels: (1) the connectivity matrices bring us information about the severity of the patient's diagnosis, and, (2) the local node parameters correlate to the patient's etiology, age and prognosis. Altogether, this study offers a new data processing framework for resting-state fMRI which provides crucial information regarding DoC patients diagnosis and prognosis. Finally, this analysis pipeline could be applied to other neurological conditions.

摘要

意识障碍(DoC)的研究非常复杂,因为患者患有各种各样的病变、受影响的脑机制、不同严重程度的症状,并且无法进行交流。结合神经影像学数据和数学建模可以帮助我们量化并更好地描述其中一些改变。本研究的目标是为功能磁共振成像(fMRI)数据提供一种新的分析和建模流程,从而在个体患者层面得出新的诊断和预后生物标志物。为此,我们将患者的fMRI数据投影到一个低维潜在空间中。根据我们在第一部分详细阐述的不同标准,我们将潜在空间的维度定义为能够维持数据所携带的复杂性、非线性和信息的最小维度。这种降维过程随后使我们能够构建受生物学启发的潜在全脑模型,该模型可以在单患者层面进行校准。特别是,我们提出了一种受大脑中星形胶质细胞对神经元活动调节启发的新模型。这种建模过程产生了两种基于模型的生物标志物(MBB),它们在不同层面提供了新的见解:(1)连接矩阵为我们提供了有关患者诊断严重程度的信息,以及(2)局部节点参数与患者的病因、年龄和预后相关。总之,本研究为静息态fMRI提供了一个新的数据处理框架,该框架提供了有关意识障碍患者诊断和预后的关键信息。最后,这种分析流程可应用于其他神经系统疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac55/12404413/a187fc104cda/pone.0328219.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验