Suppr超能文献

使用循环神经网络从功能磁共振成像中识别功能状态的时间转变

Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI.

作者信息

Li Hongming, Fan Yong

机构信息

Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11072:232-239. doi: 10.1007/978-3-030-00931-1_27. Epub 2018 Sep 13.

Abstract

Dynamic functional connectivity analysis provides valuable information for understanding brain functional activity underlying different cognitive processes. Besides sliding window based approaches, a variety of methods have been developed to automatically split the entire functional MRI scan into segments by detecting change points of functional signals to facilitate better characterization of temporally dynamic functional connectivity patterns. However, these methods are based on certain assumptions for the functional signals, such as Gaussian distribution, which are not necessarily suitable for the fMRI data. In this study, we develop a deep learning based framework for adaptively detecting temporally dynamic functional state transitions in a data-driven way without any explicit modeling assumptions, by leveraging recent advances in recurrent neural networks (RNNs) for sequence modeling. Particularly, we solve this problem in an anomaly detection framework with an assumption that the functional profile of one single time point could be reliably predicted based on its preceding profiles within a stable functional state, while large prediction errors would occur around change points of functional states. We evaluate the proposed method using both task and resting-state fMRI data obtained from the human connectome project and experimental results have demonstrated that the proposed change point detection method could effectively identify change points between different task events and split the resting-state fMRI into segments with distinct functional connectivity patterns.

摘要

动态功能连接分析为理解不同认知过程背后的大脑功能活动提供了有价值的信息。除了基于滑动窗口的方法外,还开发了多种方法,通过检测功能信号的变化点,自动将整个功能磁共振成像扫描分割成片段,以便更好地表征时间上动态的功能连接模式。然而,这些方法基于对功能信号的某些假设,如高斯分布,而这些假设不一定适用于功能磁共振成像数据。在本研究中,我们利用循环神经网络(RNN)在序列建模方面的最新进展,开发了一个基于深度学习的框架,以数据驱动的方式自适应地检测时间上动态的功能状态转换,而无需任何明确的建模假设。具体而言,我们在异常检测框架中解决这个问题,假设在稳定的功能状态下,可以根据单个时间点之前的功能轮廓可靠地预测该时间点的功能轮廓,而在功能状态的变化点周围会出现较大的预测误差。我们使用从人类连接组计划获得的任务和静息态功能磁共振成像数据对所提出的方法进行评估,实验结果表明,所提出的变化点检测方法可以有效地识别不同任务事件之间的变化点,并将静息态功能磁共振成像分割成具有不同功能连接模式的片段。

相似文献

3
Brain Decoding from Functional MRI Using Long Short-Term Memory Recurrent Neural Networks.使用长短期记忆循环神经网络从功能磁共振成像中进行脑解码
Med Image Comput Comput Assist Interv. 2018 Sep;11072:320-328. doi: 10.1007/978-3-030-00931-1_37. Epub 2018 Sep 13.

引用本文的文献

10

本文引用的文献

1
Large-scale sparse functional networks from resting state fMRI.静息态 fMRI 的大规模稀疏功能网络。
Neuroimage. 2017 Aug 1;156:1-13. doi: 10.1016/j.neuroimage.2017.05.004. Epub 2017 May 5.
8
Dynamic functional connectivity: promise, issues, and interpretations.动态功能连接:前景、问题与诠释。
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.
10
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验