Suppr超能文献

新型结核疫苗候选物 HP13138PB 的生物信息学分析和一致性验证。

Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB.

机构信息

Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.

Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China.

出版信息

Front Immunol. 2023 Jan 27;14:1102578. doi: 10.3389/fimmu.2023.1102578. eCollection 2023.

Abstract

BACKGROUND

With the increasing incidence of tuberculosis (TB) and the shortcomings of existing TB vaccines to prevent TB in adults, new TB vaccines need to be developed to address the complex TB epidemic.

METHOD

The dominant epitopes were screened from antigens to construct a novel epitope vaccine termed HP13138PB. The immune properties, structure, and function of HP13138PB were predicted and analyzed with bioinformatics and immunoinformatics. Then, the immune responses induced by the HP13138PB were confirmed by enzyme-linked immunospot assay (ELISPOT) and Th1/Th2/Th17 multi-cytokine detection kit.

RESULT

The HP13138PB vaccine consisted of 13 helper T lymphocytes (HTL) epitopes, 13 cytotoxic T lymphocytes (CTL) epitopes, and 8 B-cell epitopes. It was found that the antigenicity, immunogenicity, and solubility index of the HP13138PB vaccine were 0.87, 2.79, and 0.55, respectively. The secondary structure prediction indicated that the HP13138PB vaccine had 31% of α-helix, 11% of β-strand, and 56% of coil. The tertiary structure analysis suggested that the Z-score and the Favored region of the HP13138PB vaccine were -4.47 88.22%, respectively. Furthermore, the binding energies of the HP13138PB to toll-like receptor 2 (TLR2) was -1224.7 kcal/mol. The immunoinformatics and real-world experiments showed that the HP13138PB vaccine could induce an innate and adaptive immune response characterized by significantly higher levels of cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and IL-10.

CONCLUSION

The HP13138PB is a potential vaccine candidate to prevent TB, and this study preliminarily evaluated the ability of the HP13138PB to generate an immune response, providing a precursor target for developing TB vaccines.

摘要

背景

随着结核病(TB)发病率的增加和现有 TB 疫苗在成人中的预防效果存在缺陷,需要开发新的 TB 疫苗来应对复杂的 TB 流行。

方法

从抗原中筛选优势表位构建新型表位疫苗,命名为 HP13138PB。利用生物信息学和免疫信息学预测和分析 HP13138PB 的免疫特性、结构和功能。然后,通过酶联免疫斑点(ELISPOT)和 Th1/Th2/Th17 多细胞因子检测试剂盒确认 HP13138PB 诱导的免疫反应。

结果

HP13138PB 疫苗由 13 个辅助 T 淋巴细胞(HTL)表位、13 个细胞毒性 T 淋巴细胞(CTL)表位和 8 个 B 细胞表位组成。发现 HP13138PB 疫苗的抗原性、免疫原性和可溶性指数分别为 0.87、2.79 和 0.55。二级结构预测表明,HP13138PB 疫苗有 31%的α-螺旋、11%的β-折叠和 56%的无规卷曲。三级结构分析表明,HP13138PB 的 Z 分数和 Favored 区分别为-4.47和 88.22%。此外,HP13138PB 与 Toll 样受体 2(TLR2)的结合能为-1224.7 kcal/mol。免疫信息学和真实世界实验表明,HP13138PB 疫苗可诱导以干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)、白细胞介素-4(IL-4)和 IL-10 等细胞因子水平显著升高为特征的固有和适应性免疫反应。

结论

HP13138PB 是一种有潜力的预防 TB 的疫苗候选物,本研究初步评估了 HP13138PB 产生免疫反应的能力,为开发 TB 疫苗提供了前体靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4547/9942524/f36a7cfcb85d/fimmu-14-1102578-g001.jpg

相似文献

1
Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB.
Front Immunol. 2023 Jan 27;14:1102578. doi: 10.3389/fimmu.2023.1102578. eCollection 2023.
3
Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT.
Front Cell Infect Microbiol. 2022 Nov 2;12:1047306. doi: 10.3389/fcimb.2022.1047306. eCollection 2022.
4
A comprehensive approach to developing a multi-epitope vaccine against : from design to immunization evaluation.
Front Immunol. 2023 Nov 2;14:1280299. doi: 10.3389/fimmu.2023.1280299. eCollection 2023.
6
Analysis of Peptide-Based Biomarkers for the Diagnosis and Prevention of Latent Tuberculosis Infection.
Front Microbiol. 2022 Jun 28;13:947852. doi: 10.3389/fmicb.2022.947852. eCollection 2022.
8
Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: A reverse vaccinology analysis.
Int Immunopharmacol. 2023 Feb;115:109728. doi: 10.1016/j.intimp.2023.109728. Epub 2023 Jan 11.

引用本文的文献

1
Genome-wide expression in human whole blood for diagnosis of latent tuberculosis infection: a multicohort research.
Front Microbiol. 2025 May 9;16:1584360. doi: 10.3389/fmicb.2025.1584360. eCollection 2025.
2
Harnessing computational immunology to design targeted subunit vaccines for infectious bursal disease in poultry.
Front Bioinform. 2025 Apr 4;5:1562997. doi: 10.3389/fbinf.2025.1562997. eCollection 2025.
3
In-silico development of a novel TLR2-mediating multi-epitope vaccine against .
In Silico Pharmacol. 2025 Feb 25;13(1):34. doi: 10.1007/s40203-025-00322-8. eCollection 2025.
4
Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate.
Infect Med (Beijing). 2024 Nov 9;3(4):100148. doi: 10.1016/j.imj.2024.100148. eCollection 2024 Dec.
5
Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective.
Exploration (Beijing). 2024 Mar 5;4(5):20230138. doi: 10.1002/EXP.20230138. eCollection 2024 Oct.
6
In silico design of multi-epitope adhesin protein vaccines.
Heliyon. 2024 Sep 7;10(18):e37536. doi: 10.1016/j.heliyon.2024.e37536. eCollection 2024 Sep 30.
7
Knowledge mapping of disease-modifying therapy (DMT) in multiple sclerosis (MS): A bibliometrics analysis.
Heliyon. 2024 May 31;10(11):e31744. doi: 10.1016/j.heliyon.2024.e31744. eCollection 2024 Jun 15.
8
Development of multi-epitope mRNA vaccine against using reverse vaccinology and immunoinformatics approaches.
Synth Syst Biotechnol. 2024 May 18;9(4):667-683. doi: 10.1016/j.synbio.2024.05.008. eCollection 2024 Dec.
10
Discovering peptides and computational investigations of a multiepitope vaccine target .
Synth Syst Biotechnol. 2024 Mar 21;9(3):391-405. doi: 10.1016/j.synbio.2024.03.010. eCollection 2024 Sep.

本文引用的文献

1
Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT.
Front Cell Infect Microbiol. 2022 Nov 2;12:1047306. doi: 10.3389/fcimb.2022.1047306. eCollection 2022.
3
Protein Design: From the Aspect of Water Solubility and Stability.
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.
4
The Natural Effect of BCG Vaccination on COVID-19: The Debate Continues.
Front Immunol. 2022 Jul 8;13:953228. doi: 10.3389/fimmu.2022.953228. eCollection 2022.
6
Analysis of Peptide-Based Biomarkers for the Diagnosis and Prevention of Latent Tuberculosis Infection.
Front Microbiol. 2022 Jun 28;13:947852. doi: 10.3389/fmicb.2022.947852. eCollection 2022.
7
Cellular Immunity of Patients with Tuberculosis Combined with Diabetes.
J Immunol Res. 2022 Jun 1;2022:6837745. doi: 10.1155/2022/6837745. eCollection 2022.
8
Protein secondary structure prediction with context convolutional neural network.
RSC Adv. 2019 Nov 25;9(66):38391-38396. doi: 10.1039/c9ra05218f.
9
Peptide-Based Vaccines for Tuberculosis.
Front Immunol. 2022 Jan 31;13:830497. doi: 10.3389/fimmu.2022.830497. eCollection 2022.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验