Suppr超能文献

通过在聚(9,9-二辛基芴-2,7-二亚基)中掺杂不同量的氧化石墨烯实现双稳态电开关和非易失性存储效应。

Bistable electrical switching and nonvolatile memory effects by doping different amounts of GO in poly(9,9-dioctylfluorene-2,7-diyl).

作者信息

Xin Ying, Zhao Xiaofeng, Jiang Xiankai, Yang Qun, Huang Jiahe, Wang Shuhong, Zheng Rongrong, Wang Cheng, Hou Yanjun

机构信息

School of Chemical Engineering and Materials, Heilongjiang University Harbin 150080 P. R. China

School of Electronic Engineering, Heilongjiang University Harbin 150080 P. R. China.

出版信息

RSC Adv. 2018 Feb 13;8(13):6878-6886. doi: 10.1039/c8ra00029h. eCollection 2018 Feb 9.

Abstract

Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) was synthesized under a Suzuki coupling reaction, and its structure was proved by Fourier transform infrared (FT-IR) spectroscopy, and hydrogen and carbon nuclear magnetic resonance (H-NMR and C-NMR). A nonvolatile organic memristor, based on active layers of PFO and PFO:GO composite, was prepared by spin-coating and the influence of GO concentration on the electrical characteristics of the memristor was investigated. The results showed that the device had two kinds of conductance behavior: electric bistable nonvolatile flash memory behavior and conductor behavior. With an increase in GO concentration, the device has an increased ON/OFF current ratio, increasing from 2.1 × 10 to 1.9 × 10, a lower threshold voltage ( ), decreasing from -1.1 V to -0.7 V, and better stability. The current remained stable for 3 hours in both the ON state and OFF state, and the ON and OFF state current of the device did not change substantially after 9000 read cycles.

摘要

聚(9,9 - 二辛基芴 - 2,7 - 二亚基)(PFO)通过铃木耦合反应合成,其结构通过傅里叶变换红外(FT - IR)光谱以及氢和碳核磁共振(H - NMR和C - NMR)得以证实。基于PFO和PFO:GO复合材料活性层的非易失性有机忆阻器通过旋涂法制备,并研究了氧化石墨烯(GO)浓度对忆阻器电学特性的影响。结果表明,该器件具有两种电导行为:电双稳非易失性闪存行为和导体行为。随着GO浓度的增加,器件的开/关电流比增大,从2.1×10增大到1.9×10,阈值电压( )降低,从 - 1.1 V降至 - 0.7 V,且稳定性更好。在开态和关态下电流均保持稳定3小时,并且在9000次读取循环后器件的开态和关态电流基本不变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e06/9078296/56ba9d51b8c7/c8ra00029h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验