Suppr超能文献

微流控系统中细胞力学实验的解释取决于细胞形状描述符的选择。

Interpretation of cell mechanical experiments in microfluidic systems depend on the choice of cellular shape descriptors.

作者信息

Fregin Bob, Biedenweg Doreen, Otto Oliver

出版信息

Biomicrofluidics. 2022 Apr 28;16(2):024109. doi: 10.1063/5.0084673. eCollection 2022 Mar.

Abstract

The capability to parameterize shapes is of essential importance in biomechanics to identify cells, to track their motion, and to quantify deformation. While various shape descriptors have already been investigated to study the morphology and migration of adherent cells, little is known of how the mathematical definition of a contour impacts the outcome of rheological experiments on cells in suspension. In microfluidic systems, hydrodynamic stress distributions induce time-dependent cell deformation that needs to be quantified to determine viscoelastic properties. Here, we compared nine different shape descriptors to characterize the deformation of suspended cells in an extensional as well as shear flow using dynamic real-time deformability cytometry. While stress relaxation depends on the amplitude and duration of stress, our results demonstrate that steady-state deformation can be predicted from single cell traces even for translocation times shorter than their characteristic time. Implementing an analytical simulation, performing experiments, and testing various data analysis strategies, we compared single cell and ensemble studies to address the question of computational costs vs experimental accuracy. Results indicate that high-throughput viscoelastic measurements of cells in suspension can be performed on an ensemble scale as long as the characteristic time matches the dimensions of the microfluidic system. Finally, we introduced a score to evaluate the shape descriptor-dependent effect size for cell deformation after cytoskeletal modifications. We provide evidence that single cell analysis in an extensional flow provides the highest sensitivity independent of shape parametrization, while inverse Haralick's circularity is mostly applicable to study cells in shear flow.

摘要

在生物力学中,对形状进行参数化的能力对于识别细胞、跟踪其运动以及量化变形至关重要。虽然已经研究了各种形状描述符来研究贴壁细胞的形态和迁移,但对于轮廓的数学定义如何影响悬浮细胞流变学实验的结果却知之甚少。在微流体系统中,流体动力应力分布会引起随时间变化的细胞变形,需要对其进行量化以确定粘弹性特性。在这里,我们使用动态实时变形性细胞术比较了九种不同的形状描述符,以表征悬浮细胞在拉伸流和剪切流中的变形。虽然应力松弛取决于应力的幅度和持续时间,但我们的结果表明,即使对于比其特征时间短的迁移时间,也可以从单细胞轨迹预测稳态变形。通过实施分析模拟、进行实验和测试各种数据分析策略,我们比较了单细胞和整体研究,以解决计算成本与实验准确性的问题。结果表明,只要特征时间与微流体系统的尺寸相匹配,就可以在整体尺度上对悬浮细胞进行高通量粘弹性测量。最后,我们引入了一个分数来评估细胞骨架修饰后形状描述符依赖性效应大小对细胞变形的影响。我们提供的证据表明,拉伸流中的单细胞分析提供了最高的灵敏度,与形状参数化无关,而逆哈拉利克圆形度最适用于研究剪切流中的细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/367b/9054269/4ba4f692339f/BIOMGB-000016-024109_1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验