Sustainable Momentum SL, Av. Ansite 3, 4-6, 35011, Las Palmas, de Gran Canaria, Spain.
Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Avda. Viel 1497, Santiago, Chile.
ChemSusChem. 2017 Nov 9;10(21):4123-4134. doi: 10.1002/cssc.201701583. Epub 2017 Oct 17.
Biogenic furans (furfural and 5-hydroxymethylfurfural) are expected to become relevant building blocks based on their high degree of functionality and versatility. However, the inherent instability of furans poses considerable challenges for their synthetic modifications. Valorization routes of furans typically generate byproducts, impurities, wastes, and a cumbersome downstream processing, compromising their ecological footprint. Biocatalysis may become an alternative, given the high selectivity of enzymes, together with the mild reaction conditions applied. This Review critically discusses the options for enzymes in the upgrading of furans. Based on previous reports, a variety of biocatalytic transformations have been applied to furans, with successful cases both in aqueous and in water-free media. Options comprise the biodetoxification of toxic furans in hydrolysates, selective syntheses based on oxidation-reduction processes, solvent-free esterifications, or carboligations to afford C derivatives. Reported strategies show in general promising but still modest productivities (2-30 g L d , depending on the example). There are opportunities with high potential and deserving of further development, scale-up, and technoeconomic assessment, to entirely validate them as realistic alternatives.
生物成因呋喃(糠醛和 5-羟甲基糠醛)有望成为重要的结构单元,因为它们具有很高的功能性和多功能性。然而,呋喃固有的不稳定性给它们的合成修饰带来了相当大的挑战。呋喃的增值途径通常会产生副产物、杂质、废物和繁琐的下游处理,从而影响其生态足迹。鉴于酶的高选择性以及所应用的温和反应条件,生物催化可能成为一种替代方法。本综述批判性地讨论了酶在呋喃升级中的应用选择。根据以往的报道,已经将多种生物催化转化应用于呋喃,在水相和无水相介质中都有成功的案例。这些选择包括水解物中有毒呋喃的生物解毒、基于氧化还原过程的选择性合成、无溶剂酯化或卡罗利加化以获得 C 衍生物。报道的策略总体上显示出有前景但仍适度的生产力(2-30 g L d ,具体取决于实例)。有一些具有高潜力的机会,值得进一步开发、放大和技术经济评估,以完全验证它们作为现实替代方案的可行性。