Suppr超能文献

CuO纳米线中电输运机制的缺陷浓度依赖性

Defect-concentration dependence of electrical transport mechanisms in CuO nanowires.

作者信息

Lin Zufang, Zhan Runze, Li Luying, Liu Huihui, Jia Shuangfeng, Chen Huanjun, Tang Shuai, She Juncong, Deng Shaozhi, Xu Ningsheng, Chen Jun

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, Provincial Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, School of Physics and Engineering Guangzhou 510275 China

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 China.

出版信息

RSC Adv. 2018 Jan 9;8(4):2188-2195. doi: 10.1039/c7ra11862g. eCollection 2018 Jan 5.

Abstract

Investigations of the transport mechanisms of individual nanowires are important for advancing their use in applications. Based on statistical results for the temperature-dependent electrical characteristics of individual CuO nanowires, and by characterizing them using transmission electron microscopy, we have found that the defect concentration is the most important parameter affecting electron transport in nanowires. Space-charge-limited currents can be observed for sufficiently high applied voltages, for example about 10 V. In the ohmic regime, before the current-voltage curves of nanowires enter the trap-filling stage, three main transport mechanisms have been proposed. They are related to the defect concentrations and include combinations of defect-induced nearest-neighbor hopping, trap activation, and intrinsic excitation. Numerical calculations using the model to fit the experimental data agree very well, confirming the proposed transport mechanisms.

摘要

研究单个纳米线的传输机制对于推动其在应用中的使用非常重要。基于单个CuO纳米线温度依赖电学特性的统计结果,并通过透射电子显微镜对其进行表征,我们发现缺陷浓度是影响纳米线中电子传输的最重要参数。对于足够高的施加电压,例如约10 V,可以观察到空间电荷限制电流。在欧姆区域,在纳米线的电流-电压曲线进入陷阱填充阶段之前,已经提出了三种主要的传输机制。它们与缺陷浓度有关,包括缺陷诱导的最近邻跳跃、陷阱激活和本征激发的组合。使用该模型进行数值计算以拟合实验数据,结果非常吻合,证实了所提出的传输机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e266/9077248/e7a961fc4618/c7ra11862g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验