文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于关节软骨缺损修复的壳聚糖复合支架:综述

Chitosan composite scaffolds for articular cartilage defect repair: a review.

作者信息

Li Huijun, Hu Cheng, Yu Huijun, Chen Chuanzhong

机构信息

Shenzhen Research Institute of Shandong University Shenzhen 518057 Guangdong P. R. China

Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, School of Mechanical Engineering, Shandong University Ji'nan 250061 Shandong P. R. China.

出版信息

RSC Adv. 2018 Jan 19;8(7):3736-3749. doi: 10.1039/c7ra11593h. eCollection 2018 Jan 16.


DOI:10.1039/c7ra11593h
PMID:35542907
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9077838/
Abstract

Articular cartilage (AC) defects lack the ability to self-repair due to their avascular nature and the declined mitotic ability of mature chondrocytes. To date, cartilage tissue engineering using implanted scaffolds containing cells or growth factors is the most promising defect repair method. Scaffolds for cartilage tissue engineering have been comprehensively researched. As a promising scaffold biomaterial for AC defect repair, the properties of chitosan are summarized in this review. Strategies to composite chitosan with other materials, such as polymers (including collagen, gelatin, alginate, silk fibroin, poly-caprolactone, and poly-lactic acid) and bioceramics (including calcium phosphate, calcium polyphosphate, and hydroxyapatite) are presented. Methods to manufacture three-dimensional porous structures to support cell attachment and nutriment exchange have also been included.

摘要

关节软骨(AC)缺损因其无血管特性以及成熟软骨细胞有丝分裂能力的下降而缺乏自我修复能力。迄今为止,使用含有细胞或生长因子的植入支架进行软骨组织工程是最有前景的缺损修复方法。用于软骨组织工程的支架已得到全面研究。作为一种用于AC缺损修复的有前景的支架生物材料,本文综述了壳聚糖的特性。还介绍了将壳聚糖与其他材料复合的策略,如聚合物(包括胶原蛋白、明胶、藻酸盐、丝素蛋白、聚己内酯和聚乳酸)和生物陶瓷(包括磷酸钙、聚磷酸钙和羟基磷灰石)。也包括制造三维多孔结构以支持细胞附着和营养交换的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/37faefada560/c7ra11593h-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/02b6a8858279/c7ra11593h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/ab759bfd0536/c7ra11593h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/c36272c0da16/c7ra11593h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/bdbd17094133/c7ra11593h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/ef3ce80c7847/c7ra11593h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/21a5d722ddf6/c7ra11593h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/60e3fb6cf72c/c7ra11593h-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/e795940304cf/c7ra11593h-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/019a6566d972/c7ra11593h-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/bb2906471229/c7ra11593h-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/bf673de834d3/c7ra11593h-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/3b341642e07a/c7ra11593h-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/68da4786d3e1/c7ra11593h-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/24ad2b1a24be/c7ra11593h-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/262fc8a36210/c7ra11593h-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/ac50b3f3e71f/c7ra11593h-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/37faefada560/c7ra11593h-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/02b6a8858279/c7ra11593h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/ab759bfd0536/c7ra11593h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/c36272c0da16/c7ra11593h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/bdbd17094133/c7ra11593h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/ef3ce80c7847/c7ra11593h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/21a5d722ddf6/c7ra11593h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/60e3fb6cf72c/c7ra11593h-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/e795940304cf/c7ra11593h-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/019a6566d972/c7ra11593h-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/bb2906471229/c7ra11593h-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/bf673de834d3/c7ra11593h-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/3b341642e07a/c7ra11593h-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/68da4786d3e1/c7ra11593h-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/24ad2b1a24be/c7ra11593h-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/262fc8a36210/c7ra11593h-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/ac50b3f3e71f/c7ra11593h-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f1/9077838/37faefada560/c7ra11593h-p4.jpg

相似文献

[1]
Chitosan composite scaffolds for articular cartilage defect repair: a review.

RSC Adv. 2018-1-19

[2]
Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

Acta Biomater. 2017-9-7

[3]
3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.

Curr Med Imaging. 2021

[4]
Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering.

Biomaterials. 2011-5-20

[5]
Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

Mater Sci Eng C Mater Biol Appl. 2016-1-4

[6]
Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

J Mater Sci Mater Med. 2014-4

[7]
Fabrication of a novel 3D scaffold for cartilage tissue repair: In-vitro and in-vivo study.

Mater Sci Eng C Mater Biol Appl. 2021-9

[8]
Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering.

Tissue Cell. 2018-12

[9]
Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair.

J Biomater Appl. 2020

[10]
Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration.

Cell Tissue Bank. 2019-6

引用本文的文献

[1]
Surface-Localized Crosslinked MEW PCL-Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability.

Polymers (Basel). 2025-7-30

[2]
Chitosan-based Nano/Biomaterials in Bone Tissue Engineering and Regenerative Medicine: Recent Progress and Advances.

Curr Org Synth. 2025

[3]
Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects.

Bioact Mater. 2024-10-11

[4]
Polythiophene-wrapped Chitosan Nanofibrils with a Bouligand Structure toward Electrochemical Macroscopic Membranes.

ACS Omega. 2024-3-15

[5]
Fabrication and properties of hydroxyapatite/chitosan composite scaffolds loaded with periostin for bone regeneration.

Heliyon. 2024-2-17

[6]
Advances in Bioresorbable Triboelectric Nanogenerators.

Chem Rev. 2023-10-11

[7]
Comparative Efficacy of Endogenous Stem Cells Recruiting Hydrogels and Stem Cell-loaded Hydrogels in Knee Cartilage Regeneration: A Meta- analysis.

Curr Stem Cell Res Ther. 2024

[8]
Chitosan-Based Biomaterials for Tissue Regeneration.

Pharmaceutics. 2023-3-1

[9]
Recent Developments and Current Applications of Organic Nanomaterials in Cartilage Repair.

Bioengineering (Basel). 2022-8-15

[10]
Mussel-inspired bio-compatible free-standing adhesive films assembled layer-by-layer with water-resistance.

RSC Adv. 2018-5-22

本文引用的文献

[1]
Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects.

Polymers (Basel). 2016-6-4

[2]
Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications.

Mater Sci Eng C Mater Biol Appl. 2017-11-1

[3]
Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.

Int J Biol Macromol. 2017-8-9

[4]
Chitosan: A promising polymer for cartilage repair and viscosupplementation.

Biomed Mater Eng. 2017

[5]
Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury.

Biomaterials. 2016-9-6

[6]
Articular cartilage repair: Current needs, methods and research directions.

Semin Cell Dev Biol. 2016-7-13

[7]
Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.

Adv Healthc Mater. 2016-3-22

[8]
Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures.

Mater Sci Eng C Mater Biol Appl. 2016-4-2

[9]
Chitosan based biocomposite scaffolds for bone tissue engineering.

Int J Biol Macromol. 2016-12

[10]
Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

J Mech Behav Biomed Mater. 2016-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索