Shi Xinying, Zhang Meng, Wang Xiao, Kistanov Andrey A, Li Taohai, Cao Wei, Huttula Marko
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland.
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
Nanoscale. 2022 Jun 23;14(24):8601-8610. doi: 10.1039/d2nr01489k.
Direct sunlight-induced water splitting for photocatalytic hydrogen evolution is the dream for an ultimate clean energy source. So far, typical photocatalysts require complicated synthetic processes and barely work without additives or electrolytes. Here, we report the realization of a hydrogen evolution strategy with a novel Ni-Ag-MoS ternary nanocatalyst under visible/sun light. Synthesized through an ultrasound-assisted wet method, the composite exhibits stable catalytic activity for long-term hydrogen production from both pure and natural water. A high efficiency of 73 μmol g W h is achieved with only a visible light source and the (MoS)AgNi catalyst, matching the values of present additive-enriched photocatalysts. Verified by experimental characterizations and first-principles calculations, the enhanced photocatalytic ability is attributed to effective charge migration through the dangling bonds at the Ni-Ag-MoS alloy interface and the activation of the MoS basal planes.
通过直接阳光诱导水分解来实现光催化析氢是人们对终极清洁能源的梦想。到目前为止,典型的光催化剂需要复杂的合成过程,并且在没有添加剂或电解质的情况下几乎无法工作。在此,我们报道了一种新型Ni-Ag-MoS三元纳米催化剂在可见光/太阳光下实现析氢的策略。通过超声辅助湿法合成,该复合材料对纯水和天然水的长期产氢均表现出稳定的催化活性。仅使用可见光源和(MoS)AgNi催化剂就实现了73 μmol g W h的高效率,与目前富含添加剂的光催化剂的值相当。通过实验表征和第一性原理计算验证,光催化能力的增强归因于通过Ni-Ag-MoS合金界面处的悬空键实现的有效电荷迁移以及MoS基面的活化。