John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
Salk Institute for Biological Studies, La Jolla, CA, USA.
Nature. 2022 Jun;606(7913):351-357. doi: 10.1038/s41586-022-04709-x. Epub 2022 May 11.
Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.
死亡被定义为循环、呼吸或脑活动的不可逆转停止。许多来自已故供体的人体外周器官可以使用优化其活力的方案进行移植。然而,中枢神经系统的组织在循环停止后会迅速失去活力,阻碍了它们移植的潜力。导致神经元死亡的时间过程和机制以及恢复的潜力仍然定义不清。在这里,我们使用视网膜作为中枢神经系统的模型,系统地研究了死亡和神经元恢复的动力学。我们证明了神经元信号的迅速下降,并确定了在死后的小鼠和人视网膜中恢复同步活体样突触间传递的条件。我们测量了死后 5 小时内取出的人眼黄斑感光细胞的光诱发反应,并确定了驱动死后光信号可逆和不可逆丧失的可调节因素。最后,我们量化了光转导的限速失活反应,这是一个模型 G 蛋白信号级联,在人外周和黄斑视网膜以及猕猴视网膜中进行。我们的方法将通过在人类中枢神经系统中进行变革性研究具有广泛的应用和影响,提出关于神经元细胞死亡的不可逆性的问题,并为视觉康复提供新途径。