Ding Yifan, Shi Zixiong, Sun Yingjie, Wu Jianghua, Pan Xiaoqing, Sun Jingyu
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, PR China.
Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
ACS Nano. 2023 Mar 28;17(6):6002-6010. doi: 10.1021/acsnano.3c00377. Epub 2023 Mar 13.
Mediator design has stimulated ever-increasing attention to help tackle a surge of detrimental caveats in Li-S realms, mainly pertaining to rampant polysulfide shuttling and sluggish redox kinetics. Nevertheless, universal designing philosophy, despite being highly sought-after, remains still elusive to date. Herein, we present a generic and simple material strategy to allow the target fabrication of advanced mediator toward boosted sulfur electrochemistry. This trick is done by the geometric/electronic comodulation of a prototype VN mediator, where the interplay of its triple-phase interface, favorable catalytic activity, and facile ion diffusivity is conducive to steering bidirectional sulfur redox kinetics. In laboratory tests, the thus-derived Li-S cells manifest impressive cyclic performances with a capacity decay rate of 0.07% per cycle over 500 cycles at 1.0 C. Moreover, under a sulfur loading of 5.0 mg cm, the cell could sustain a durable areal capacity of 4.63 mAh cm. Our work is anticipated to lay a theory-to-application foundation for rationalizing the design and modulation of reliable polysulfide mediators in working Li-S batteries.
介体设计已引发了越来越多的关注,以帮助应对锂硫领域中激增的不利因素,这些不利因素主要与猖獗的多硫化物穿梭和缓慢的氧化还原动力学有关。然而,尽管普遍的设计理念备受追捧,但迄今为止仍然难以捉摸。在此,我们提出了一种通用且简单的材料策略,以实现先进介体的目标制备,从而促进硫电化学。这个方法是通过对原型VN介体进行几何/电子共调制来实现的,其三相界面、良好的催化活性和便捷的离子扩散率之间的相互作用有利于引导双向硫氧化还原动力学。在实验室测试中,由此衍生的锂硫电池表现出令人印象深刻的循环性能,在1.0 C下500次循环中容量衰减率为每循环0.07%。此外,在硫负载量为5.0 mg cm时,该电池能够维持4.63 mAh cm的持久面积容量。我们的工作有望为合理设计和调制工作中的锂硫电池中可靠的多硫化物介体奠定从理论到应用的基础。