Suppr超能文献

SCSilicon:一种用于合成单细胞 DNA 测序数据生成的工具。

SCSilicon: a tool for synthetic single-cell DNA sequencing data generation.

机构信息

School of Software, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

出版信息

BMC Genomics. 2022 May 11;23(Suppl 4):359. doi: 10.1186/s12864-022-08566-w.

Abstract

BACKGROUND

Single-cell DNA sequencing is getting indispensable in the study of cell-specific cancer genomics. The performance of computational tools that tackle single-cell genome aberrations may be nevertheless undervalued or overvalued, owing to the insufficient size of benchmarking data. In silicon simulation is a cost-effective approach to generate as many single-cell genomes as possible in a controlled manner to make reliable and valid benchmarking.

RESULTS

This study proposes a new tool, SCSilicon, which efficiently generates single-cell in silicon DNA reads with minimum manual intervention. SCSilicon automatically creates a set of genomic aberrations, including SNP, SNV, Indel, and CNV. Besides, SCSilicon yields the ground truth of CNV segmentation breakpoints and subclone cell labels. We have manually inspected a series of synthetic variations. We conducted a sanity check of the start-of-the-art single-cell CNV callers and found SCYN was the most robust one.

CONCLUSIONS

SCSilicon is a user-friendly software package for users to develop and benchmark single-cell CNV callers. Source code of SCSilicon is available at https://github.com/xikanfeng2/SCSilicon .

摘要

背景

单细胞 DNA 测序在研究细胞特异性癌症基因组学方面变得不可或缺。由于基准数据的规模不足,处理单细胞基因组异常的计算工具的性能可能被低估或高估。硅模拟是一种具有成本效益的方法,可以以可控的方式生成尽可能多的单细胞基因组,从而进行可靠和有效的基准测试。

结果

本研究提出了一种新工具 SCSilicon,它可以在最小的人工干预下有效地生成单细胞硅 DNA 读取。SCSilicon 自动创建一组基因组异常,包括 SNP、SNV、插入缺失和 CNV。此外,SCSilicon 还生成了 CNV 分割断点和亚克隆细胞标签的真实情况。我们已经手动检查了一系列合成变体。我们对最先进的单细胞 CNV 调用者进行了合理性检查,发现 SCYN 是最稳健的一个。

结论

SCSilicon 是一个用户友好的软件包,供用户开发和基准测试单细胞 CNV 调用者。SCSilicon 的源代码可在 https://github.com/xikanfeng2/SCSilicon 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d704/9092674/c832e6239985/12864_2022_8566_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验