Suppr超能文献

从小鼠皮层神经团模型中提取动态理解。

Extracting Dynamical Understanding From Neural-Mass Models of Mouse Cortex.

作者信息

Siu Pok Him, Müller Eli, Zerbi Valerio, Aquino Kevin, Fulcher Ben D

机构信息

School of Physics, The University of Sydney, Camperdown, NSW, Australia.

Neural Control of Movement Lab, D-HEST, ETH Zurich, Zurich, Switzerland.

出版信息

Front Comput Neurosci. 2022 Apr 25;16:847336. doi: 10.3389/fncom.2022.847336. eCollection 2022.

Abstract

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.

摘要

具有高空间分辨率和全脑覆盖范围的新脑图谱迅速推进了我们对大脑神经结构的认识,包括哺乳动物皮层中兴奋性和抑制性细胞密度的系统性变化。但是,理解大脑微观尺度的生理学如何塑造宏观尺度的脑动力学仍然是一个挑战。虽然基于生理学的脑动力学数学模型很适合弥合这一解释差距,但其复杂性可能成为对其产生的动力学提供清晰机制解释的障碍。在这项工作中,我们开发了一种小鼠皮层的神经质量模型,并展示了分岔图(它捕获对输入的局部动态响应及其在脑区之间的变化)如何能够用于理解由此产生的全脑动力学。我们表明,在令人惊讶的简单动态模式中(包括所有脑区都局限于一个稳定不动点的情况),可以找到与静息态功能磁共振成像(fMRI)数据的强拟合,在这些模式中,各区域能够对其输入的变化做出强烈响应,这与直接的结构连接对麻醉小鼠的功能连接提供了强大约束是一致的。我们还使用分岔图来展示,受细胞密度数据约束的对整个皮层局部兴奋性和抑制性耦合强度的扰动如何对由此产生的皮层活动提供空间依赖性约束,并支持更多样化的同时发生的动态模式。我们的工作展示了根据潜在动态机制可视化和解释模型性能的方法,这种方法对于构建解释性的、基于生理学的、支撑大规模脑活动的动力学原理模型至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c8c/9081874/b45a79862dcb/fncom-16-847336-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验