Suppr超能文献

基于FUCCI的实时成像平台揭示了人诱导多能干细胞衍生心肌细胞的细胞周期动态并鉴定出促增殖化合物。

FUCCI-Based Live Imaging Platform Reveals Cell Cycle Dynamics and Identifies Pro-proliferative Compounds in Human iPSC-Derived Cardiomyocytes.

作者信息

Murganti Francesca, Derks Wouter, Baniol Marion, Simonova Irina, Trus Palina, Neumann Katrin, Khattak Shahryar, Guan Kaomei, Bergmann Olaf

机构信息

Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.

Karolinska Institute, Cell and Molecular Biology (CMB), Stockholm, Sweden.

出版信息

Front Cardiovasc Med. 2022 Apr 25;9:840147. doi: 10.3389/fcvm.2022.840147. eCollection 2022.

Abstract

One of the major goals in cardiac regeneration research is to replace lost ventricular tissue with new cardiomyocytes. However, cardiomyocyte proliferation drops to low levels in neonatal hearts and is no longer efficient in compensating for the loss of functional myocardium in heart disease. We generated a human induced pluripotent stem cell (iPSC)-derived cardiomyocyte-specific cell cycle indicator system (TNNT2-FUCCI) to characterize regular and aberrant cardiomyocyte cycle dynamics. We visualized cell cycle progression in TNNT2-FUCCI and found G2 cycle arrest in endoreplicating cardiomyocytes. Moreover, we devised a live-cell compound screening platform to identify pro-proliferative drug candidates. We found that the alpha-adrenergic receptor agonist clonidine induced cardiomyocyte proliferation and increased cardiomyocyte cell cycle entry in neonatal mice. In conclusion, the TNNT2-FUCCI system is a versatile tool to characterize cardiomyocyte cell cycle dynamics and identify pro-proliferative candidates with regenerative potential in the mammalian heart.

摘要

心脏再生研究的主要目标之一是用新的心肌细胞替代丢失的心室组织。然而,心肌细胞增殖在新生儿心脏中降至低水平,并且在心脏病中不再能够有效地补偿功能性心肌的损失。我们生成了一种源自人诱导多能干细胞(iPSC)的心肌细胞特异性细胞周期指示系统(TNNT2-FUCCI),以表征正常和异常的心肌细胞周期动态。我们观察了TNNT2-FUCCI中的细胞周期进程,发现终末复制心肌细胞中存在G2期阻滞。此外,我们设计了一个活细胞化合物筛选平台,以鉴定促增殖药物候选物。我们发现α-肾上腺素能受体激动剂可乐定可诱导新生小鼠心肌细胞增殖并增加心肌细胞进入细胞周期的比例。总之,TNNT2-FUCCI系统是一种多功能工具,可用于表征心肌细胞周期动态,并鉴定在哺乳动物心脏中具有再生潜力的促增殖候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dae/9081338/4bbb12f410d2/fcvm-09-840147-g0001.jpg

相似文献

3
Identification and characterization of distinct cell cycle stages in cardiomyocytes using the FUCCI transgenic system.
Exp Cell Res. 2021 Nov 15;408(2):112880. doi: 10.1016/j.yexcr.2021.112880. Epub 2021 Oct 14.
4
Live cell screening identifies glycosides as enhancers of cardiomyocyte cell cycle activity.
Front Cardiovasc Med. 2022 Sep 26;9:901396. doi: 10.3389/fcvm.2022.901396. eCollection 2022.
5
Fluorescent indicators for continuous and lineage-specific reporting of cell-cycle phases in human pluripotent stem cells.
Biotechnol Bioeng. 2020 Jul;117(7):2177-2186. doi: 10.1002/bit.27352. Epub 2020 Apr 22.
6
Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart.
Stem Cell Reports. 2023 Aug 8;18(8):1672-1685. doi: 10.1016/j.stemcr.2023.06.006. Epub 2023 Jul 13.
7
Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair.
Cell Res. 2017 Aug;27(8):1002-1019. doi: 10.1038/cr.2017.84. Epub 2017 Jun 16.
8
LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration.
Cell Res. 2021 Apr;31(4):450-462. doi: 10.1038/s41422-020-00411-7. Epub 2020 Sep 24.
9
Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte.
J Mol Cell Cardiol. 2014 Jul;72:241-9. doi: 10.1016/j.yjmcc.2014.03.020. Epub 2014 Apr 3.
10
Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells.
Circ Cardiovasc Genet. 2013 Dec;6(6):624-33. doi: 10.1161/CIRCGENETICS.113.000330. Epub 2013 Oct 18.

引用本文的文献

2
3
Cell cycle visualization tools to study cardiomyocyte proliferation in real-time.
Open Biol. 2024 Oct;14(10):240167. doi: 10.1098/rsob.240167. Epub 2024 Oct 9.
4
SMAD3 mediates the specification of human induced pluripotent stem cell-derived epicardium into progenitors for the cardiac pericyte lineage.
Stem Cell Reports. 2024 Oct 8;19(10):1399-1416. doi: 10.1016/j.stemcr.2024.08.008. Epub 2024 Sep 26.
5
Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales.
Biochem J. 2023 Oct 31;480(20):1693-1717. doi: 10.1042/BCJ20220223.
7
Live cell screening identifies glycosides as enhancers of cardiomyocyte cell cycle activity.
Front Cardiovasc Med. 2022 Sep 26;9:901396. doi: 10.3389/fcvm.2022.901396. eCollection 2022.

本文引用的文献

1
Identification and characterization of distinct cell cycle stages in cardiomyocytes using the FUCCI transgenic system.
Exp Cell Res. 2021 Nov 15;408(2):112880. doi: 10.1016/j.yexcr.2021.112880. Epub 2021 Oct 14.
2
Metformin accelerates zebrafish heart regeneration by inducing autophagy.
NPJ Regen Med. 2021 Oct 8;6(1):62. doi: 10.1038/s41536-021-00172-w.
4
Ki-67 gene expression.
Cell Death Differ. 2021 Dec;28(12):3357-3370. doi: 10.1038/s41418-021-00823-x. Epub 2021 Jun 28.
5
Cardioids reveal self-organizing principles of human cardiogenesis.
Cell. 2021 Jun 10;184(12):3299-3317.e22. doi: 10.1016/j.cell.2021.04.034. Epub 2021 May 20.
7
TRPV1 activation mitigates hypoxic injury in mouse cardiomyocytes by inducing autophagy through the AMPK signaling pathway.
Am J Physiol Cell Physiol. 2020 May 1;318(5):C1018-C1029. doi: 10.1152/ajpcell.00161.2019. Epub 2020 Apr 15.
8
Cardiomyocyte Maturation: New Phase in Development.
Circ Res. 2020 Apr 10;126(8):1086-1106. doi: 10.1161/CIRCRESAHA.119.315862. Epub 2020 Apr 9.
9
Capsaicin Alleviates the Deteriorative Mitochondrial Function by Upregulating 14-3-3 in Anoxic or Anoxic/Reoxygenated Cardiomyocytes.
Oxid Med Cell Longev. 2020 Mar 3;2020:1750289. doi: 10.1155/2020/1750289. eCollection 2020.
10
Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration.
Dev Cell. 2020 Apr 6;53(1):42-59.e11. doi: 10.1016/j.devcel.2020.01.030. Epub 2020 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验