Suppr超能文献

基于深度神经网络的三维旋转 DSA 颅内动脉瘤检测与分割。

Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA.

机构信息

Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

National Clinical Research Center (CNCRC)-Hanalytics Artificial Intelligence Research Center for Neurological Disorders and Biomind Technology, Beijing China.

出版信息

Interv Neuroradiol. 2021 Oct;27(5):648-657. doi: 10.1177/15910199211000956. Epub 2021 Mar 9.

Abstract

OBJECTIVE

Accurate diagnosis and measurement of intracranial aneurysms are challenging. This study aimed to develop a 3D convolutional neural network (CNN) model to detect and segment intracranial aneurysms (IA) on 3D rotational DSA (3D-RA) images.

METHODS

3D-RA images were collected and annotated by 5 neuroradiologists. The annotated images were then divided into three datasets: training, validation, and test. A 3D Dense-UNet-like CNN (3D-Dense-UNet) segmentation algorithm was constructed and trained using the training dataset. Diagnostic performance to detect aneurysms and segmentation accuracy was assessed for the final model on the test dataset using the free-response receiver operating characteristic (FROC). Finally, the CNN-inferred maximum diameter was compared against expert measurements by Pearson's correlation and Bland-Altman limits of agreement (LOA).

RESULTS

A total of 451 patients with 3D-RA images were split into n = 347/41/63 training/validation/test datasets, respectively. For aneurysm detection, observed FROC analysis showed that the model managed to attain a sensitivity of 0.710 at 0.159 false positives (FP)/case, and 0.986 at 1.49 FP/case. The proposed method had good agreement with reference manual aneurysmal maximum diameter measurements (8.3 ± 4.3 mm vs. 7.8 ± 4.8 mm), with a correlation coefficient r = 0.77, small bias of 0.24 mm, and LOA of -6.2 to 5.71 mm. 37.0% and 77% of diameter measurements were within ±1 mm and ±2.5 mm of expert measurements.

CONCLUSIONS

A 3D-Dense-UNet model can detect and segment aneurysms with relatively high accuracy using 3D-RA images. The automatically measured maximum diameter has potential clinical application value.

摘要

目的

颅内动脉瘤的准确诊断和测量具有挑战性。本研究旨在开发一种 3D 卷积神经网络(CNN)模型,以检测和分割 3D 旋转数字减影血管造影(3D-RA)图像上的颅内动脉瘤(IA)。

方法

收集并由 5 名神经放射科医生对 3D-RA 图像进行标注。标注后的图像被分为三个数据集:训练集、验证集和测试集。使用训练集构建和训练 3D 密集型 UNet 样 CNN(3D-Dense-UNet)分割算法。使用自由响应接收器操作特性(FROC)评估最终模型在测试数据集上检测动脉瘤和分割准确性的诊断性能。最后,通过 Pearson 相关系数和 Bland-Altman 一致性界限(LOA)比较 CNN 推断的最大直径与专家测量值。

结果

共对 451 例 3D-RA 图像进行分析,分别分为 n=347/41/63 个训练/验证/测试数据集。对于动脉瘤检测,观察到的 FROC 分析表明,该模型在 0.159 个假阳性(FP)/例时实现了 0.710 的敏感性,在 1.49 FP/例时实现了 0.986 的敏感性。该方法与参考手动测量的动脉瘤最大直径具有良好的一致性(8.3±4.3mm 与 7.8±4.8mm),相关系数 r=0.77,偏倚小,LOA 为-6.2 至 5.71mm。77%的直径测量值在专家测量值的±1mm 以内,37.0%的直径测量值在专家测量值的±2.5mm 以内。

结论

3D-Dense-UNet 模型可以使用 3D-RA 图像较准确地检测和分割动脉瘤。自动测量的最大直径具有潜在的临床应用价值。

相似文献

引用本文的文献

本文引用的文献

3
Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.基于深度学习的 3D TOF-MRA 颅内动脉瘤检测。
AJNR Am J Neuroradiol. 2019 Jan;40(1):25-32. doi: 10.3174/ajnr.A5911. Epub 2018 Dec 20.
9
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验