Department of Imaging Physics, Delft University of Technology, Delft 2628CJ, The Netherlands.
Bioinformatics. 2022 Jun 13;38(12):3281-3287. doi: 10.1093/bioinformatics/btac320.
We present a fast particle fusion method for particles imaged with single-molecule localization microscopy. The state-of-the-art approach based on all-to-all registration has proven to work well but its computational cost scales unfavorably with the number of particles N, namely as N2. Our method overcomes this problem and achieves a linear scaling of computational cost with N by making use of the Joint Registration of Multiple Point Clouds (JRMPC) method. Straightforward application of JRMPC fails as mostly locally optimal solutions are found. These usually contain several overlapping clusters that each consist of well-aligned particles, but that have different poses. We solve this issue by repeated runs of JRMPC for different initial conditions, followed by a classification step to identify the clusters, and a connection step to link the different clusters obtained for different initializations. In this way a single well-aligned structure is obtained containing the majority of the particles.
We achieve reconstructions of experimental DNA-origami datasets consisting of close to 400 particles within only 10 min on a CPU, with an image resolution of 3.2 nm. In addition, we show artifact-free reconstructions of symmetric structures without making any use of the symmetry. We also demonstrate that the method works well for poor data with a low density of labeling and for 3D data.
The code is available for download from https://github.com/wexw/Joint-Registration-of-Multiple-Point-Clouds-for-Fast-Particle-Fusion-in-Localization-Microscopy.
Supplementary data are available at Bioinformatics online.
我们提出了一种快速的粒子融合方法,用于单分子定位显微镜成像的粒子。基于全对全配准的最新方法已被证明效果很好,但它的计算成本与粒子数量 N 的平方不成比例,即 N2。我们的方法通过利用多点云联合配准(JRMPC)方法克服了这个问题,并实现了与 N 线性比例的计算成本。由于通常找到的是局部最优解,因此直接应用 JRMPC 会失败。这些通常包含几个重叠的簇,每个簇都由排列良好的粒子组成,但具有不同的位姿。我们通过对不同的初始条件重复运行 JRMPC 来解决这个问题,然后进行分类步骤来识别聚类,以及连接步骤来连接不同初始化获得的不同聚类。通过这种方式,可以获得一个包含大多数粒子的单个良好对齐的结构。
我们在 CPU 上仅用 10 分钟即可重建近 400 个粒子的实验 DNA 折纸数据集,图像分辨率为 3.2nm。此外,我们展示了无对称结构的无伪影重建,而无需使用任何对称性。我们还证明了该方法对于标记密度低和 3D 数据的较差数据也能很好地工作。
补充数据可在 Bioinformatics 在线获取。