Advanced Baby Imaging Lab, Rhode Island Hospital, Providence, Rhode Island, USA.
Department of Diagnostic Radiology, Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA.
Magn Reson Med. 2022 Sep;88(3):1273-1281. doi: 10.1002/mrm.29273. Epub 2022 May 12.
Low magnetic field systems provide an important opportunity to expand MRI to new and diverse clinical and research study populations. However, a fundamental limitation of low field strength systems is the reduced SNR compared to 1.5 or 3T, necessitating compromises in spatial resolution and imaging time. Most often, images are acquired with anisotropic voxels with low through-plane resolution, which provide acceptable image quality with reasonable scan times, but can impair visualization of subtle pathology.
Here, we describe a super-resolution approach to reconstruct high-resolution isotropic T -weighted images from a series of low-resolution anisotropic images acquired in orthogonal orientations. Furthermore, acquiring each image with an incremented TE allows calculations of quantitative T images without time penalty.
Our approach is demonstrated via phantom and in vivo human brain imaging, with simultaneous 1.5 × 1.5 × 1.5 mm T -weighted and quantitative T maps acquired using a clinically feasible approach that combines three acquisition that require approximately 4-min each to collect. Calculated T values agree with reference multiple TE measures with intraclass correlation values of 0.96 and 0.85 in phantom and in vivo measures, respectively, in line with previously reported brain T values at 150 mT, 1.5T, and 3T.
Our multi-orientation and multi-TE approach is a time-efficient method for high-resolution T -weighted images for anatomical visualization with simultaneous quantitative T imaging for increased sensitivity to tissue microstructure and chemical composition.
低磁场系统为将 MRI 扩展到新的和多样化的临床和研究研究人群提供了重要机会。然而,低场强系统的一个基本限制是与 1.5 或 3T 相比信噪比降低,这需要在空间分辨率和成像时间方面做出妥协。通常,图像是使用各向异性体素采集的,具有较低的平面内分辨率,这在合理的扫描时间内提供可接受的图像质量,但可能会损害细微病理学的可视化。
在这里,我们描述了一种从在正交方向采集的一系列低分辨率各向异性图像重建高分辨率各向同性 T 加权图像的超分辨率方法。此外,通过增加 TE 来获取每个图像允许在不增加时间开销的情况下计算定量 T 图像。
我们的方法通过体模和体内人脑成像进行了演示,同时使用临床可行的方法获得了 1.5×1.5×1.5mm 的 T 加权和定量 T 图,该方法结合了三个采集,每个采集大约需要 4 分钟即可完成。计算出的 T 值与参考多 TE 测量值一致,在体模和体内测量中,内类相关值分别为 0.96 和 0.85,与之前在 150mT、1.5T 和 3T 报道的脑 T 值一致。
我们的多方位和多 TE 方法是一种高效的方法,用于高分辨率 T 加权图像的解剖可视化,同时进行定量 T 成像,以提高对组织微观结构和化学成分的敏感性。