Suppr超能文献

二维胎儿脑 MRI 超分辨率的深度鲁棒残差网络

Deep robust residual network for super-resolution of 2D fetal brain MRI.

机构信息

The school of information and communications engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi'an, 710049, China.

出版信息

Sci Rep. 2022 Jan 10;12(1):406. doi: 10.1038/s41598-021-03979-1.

Abstract

Spatial resolution is a key factor of quantitatively evaluating the quality of magnetic resonance imagery (MRI). Super-resolution (SR) approaches can improve its spatial resolution by reconstructing high-resolution (HR) images from low-resolution (LR) ones to meet clinical and scientific requirements. To increase the quality of brain MRI, we study a robust residual-learning SR network (RRLSRN) to generate a sharp HR brain image from an LR input. Due to the Charbonnier loss can handle outliers well, and Gradient Difference Loss (GDL) can sharpen an image, we combined the Charbonnier loss and GDL to improve the robustness of the model and enhance the texture information of SR results. Two MRI datasets of adult brain, Kirby 21 and NAMIC, were used to train and verify the effectiveness of our model. To further verify the generalizability and robustness of the proposed model, we collected eight clinical fetal brain MRI 2D data for evaluation. The experimental results have shown that the proposed deep residual-learning network achieved superior performance and high efficiency over other compared methods.

摘要

空间分辨率是定量评估磁共振成像(MRI)质量的关键因素。超分辨率(SR)方法可以通过从低分辨率(LR)图像重建高分辨率(HR)图像来提高其空间分辨率,以满足临床和科学的要求。为了提高脑 MRI 的质量,我们研究了一种鲁棒的残差学习 SR 网络(RRLSRN),以便从 LR 输入生成清晰的 HR 脑图像。由于 Charbonnier 损失可以很好地处理异常值,而梯度差损失(GDL)可以锐化图像,因此我们将 Charbonnier 损失和 GDL 结合起来,以提高模型的鲁棒性并增强 SR 结果的纹理信息。我们使用成人脑的 Kirby 21 和 NAMIC 两个 MRI 数据集来训练和验证我们模型的有效性。为了进一步验证所提出模型的泛化能力和鲁棒性,我们收集了八个临床胎儿脑 MRI 2D 数据进行评估。实验结果表明,所提出的深度残差学习网络在性能和效率方面均优于其他比较方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6103/8748749/1590bec60a4a/41598_2021_3979_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验