ESAT-STADIUS, KU Leuven, 3001 Leuven, Belgium.
Bioinformatics. 2022 May 13;38(10):2802-2809. doi: 10.1093/bioinformatics/btac178.
Transcriptional regulation mechanisms allow cells to adapt and respond to external stimuli by altering gene expression. The possible cell transcriptional states are determined by the underlying gene regulatory network (GRN), and reliably inferring such network would be invaluable to understand biological processes and disease progression.
In this article, we present a novel method for the inference of GRNs, called PORTIA, which is based on robust precision matrix estimation, and we show that it positively compares with state-of-the-art methods while being orders of magnitude faster. We extensively validated PORTIA using the DREAM and MERLIN+P datasets as benchmarks. In addition, we propose a novel scoring metric that builds on graph-theoretical concepts.
The code and instructions for data acquisition and full reproduction of our results are available at https://github.com/AntoinePassemiers/PORTIA-Manuscript. PORTIA is available on PyPI as a Python package (portia-grn).
Supplementary data are available at Bioinformatics online.
转录调控机制允许细胞通过改变基因表达来适应和响应外部刺激。潜在的细胞转录状态由基础基因调控网络(GRN)决定,可靠地推断这种网络对于理解生物过程和疾病进展将是非常有价值的。
在本文中,我们提出了一种新的基因调控网络推断方法,称为 PORTIA,它基于稳健的精确矩阵估计,我们表明它与最先进的方法相比具有积极的比较,同时速度快几个数量级。我们使用 DREAM 和 MERLIN+P 数据集作为基准,广泛验证了 PORTIA。此外,我们提出了一种新的评分指标,该指标基于图论概念。
代码和获取数据以及重现我们结果的完整说明可在 https://github.com/AntoinePassemiers/PORTIA-Manuscript 上获得。PORTIA 作为 Python 包(portia-grn)在 PyPI 上可用。
补充数据可在生物信息学在线获得。