Suppr超能文献

用于高级 3D 生物打印组织增氧的光合微生物。

Photosynthetic microorganisms for the oxygenation of advanced 3D bioprinted tissues.

机构信息

School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia.

Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.

出版信息

Acta Biomater. 2023 Jul 15;165:180-196. doi: 10.1016/j.actbio.2022.05.009. Epub 2022 May 11.

Abstract

3D bioprinting technology has emerged as a tool that promises to revolutionize the biomedical field, including tissue engineering and regeneration. Despite major technological advancements, several challenges remain to be solved before 3D bioprinted tissues could be fully translated from the bench to the bedside. As oxygen plays a key role in aerobic metabolism, which allows energy production in the mitochondria; as a consequence, the lack of tissue oxygenation is one of the main limitations of current bioprinted tissues and organs. In order to improve tissue oxygenation, recent approaches have been established for a broad range of clinical applications, with some already applied using 3D bioprinting technologies. Among them, the incorporation of photosynthetic microorganisms, such as microalgae and cyanobacteria, is a promising approach that has been recently explored to generate chimerical plant-animal tissues where, upon light exposure, oxygen can be produced and released in a localized and controlled manner. This review will briefly summarize the state-of-the-art approaches to improve tissue oxygenation, as well as studies describing the use of photosynthetic microorganisms in 3D bioprinting technologies. STATEMENT OF SIGNIFICANCE: 3D bioprinting technology has emerged as a tool for the generation of viable and functional tissues for direct in vitro and in vivo applications, including disease modeling, drug discovery and regenerative medicine. Despite the latest advancements in this field, suboptimal oxygen delivery to cells before, during and after the bioprinting process limits their viability within 3D bioprinted tissues. This review article first highlights state-of-the-art approaches used to improve oxygen delivery in bioengineered tissues to overcome this challenge. Then, it focuses on the emerging roles played by photosynthetic organisms as novel biomaterials for bioink generation. Finally, it provides considerations around current challenges and novel potential opportunities for their use in bioinks, by comparing latest published studies using algae for 3D bioprinting.

摘要

3D 生物打印技术已经成为一种有潜力改变生物医学领域的工具,包括组织工程和再生医学。尽管在技术上取得了重大进展,但在 3D 生物打印的组织能够从实验室完全转化到临床应用之前,仍然存在一些挑战需要解决。由于氧气在需氧代谢中起着关键作用,这种代谢为线粒体提供能量;因此,组织缺氧是目前生物打印组织和器官的主要限制因素之一。为了改善组织氧合,最近已经针对广泛的临床应用建立了一些方法,其中一些已经应用于 3D 生物打印技术。其中,将光合作用微生物(如微藻和蓝藻)纳入其中是一种很有前途的方法,最近已经探索了将其用于生成嵌合植物-动物组织,在这些组织中,当暴露在光下时,可以以局部和受控的方式产生和释放氧气。本文将简要总结改善组织氧合的最新方法,以及描述在 3D 生物打印技术中使用光合作用微生物的研究。意义陈述:3D 生物打印技术已经成为一种生成用于直接体外和体内应用的可行和功能性组织的工具,包括疾病建模、药物发现和再生医学。尽管该领域取得了最新进展,但在生物打印过程之前、期间和之后,细胞的氧气输送不足限制了它们在 3D 生物打印组织中的活力。本文首先强调了用于改善生物工程组织中氧气输送的最新方法,以克服这一挑战。然后,它专注于光合作用生物体作为生物墨水生成的新型生物材料的新兴作用。最后,通过比较使用藻类进行 3D 生物打印的最新发表研究,对其在生物墨水中的使用的当前挑战和新的潜在机会进行了考虑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验