文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

创伤性脑损伤对大鼠肠道微生物组成和血清氨基酸谱的影响。

Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats.

机构信息

Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, 123182 Moscow, Russia.

A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.

出版信息

Cells. 2022 Apr 21;11(9):1409. doi: 10.3390/cells11091409.


DOI:10.3390/cells11091409
PMID:35563713
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9102408/
Abstract

Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the "brain-gut-microbiome axis", a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain-gut-microbiome axis in TBI.

摘要

创伤性脑损伤 (TBI) 对身体有很大的影响:它会损伤脑组织和外周神经系统,并使许多类型的组织的内稳态发生转移。急性脑损伤会损害“脑-肠-微生物群轴”,这是由大脑、胃肠道和肠道微生物群组成的平衡网络,它具有复杂的影响:大脑损伤会改变微生物组的组成;改变的微生物组通过各种细菌代谢物影响 TBI 严重程度、神经可塑性和代谢途径。我们在大鼠中模拟了 TBI。我们使用生物信息学方法,试图确定肠道微生物组组成、TBI 严重程度、神经功能恢复率和血液代谢组之间的相关性。我们发现 TBI 导致 26 种细菌属的丰度发生变化。最明显的变化发生在 物种的丰度上。TBI 还改变了几种代谢物的浓度,特别是瓜氨酸和色氨酸。我们没有发现 TBI 严重程度与预先存在的肠道微生物组组成或血液代谢物之间存在显著相关性。然而,我们在两组表现出高和低神经功能恢复率的受试者之间发现了一些差异。本研究强调了脑-肠-微生物群轴在 TBI 中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/8e7baff9583b/cells-11-01409-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/a6d0d38a5da4/cells-11-01409-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/2b997a0b5c93/cells-11-01409-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/eacff33b1ac0/cells-11-01409-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/6b617880f67c/cells-11-01409-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/a177f4214534/cells-11-01409-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/b50a24e98689/cells-11-01409-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/57e0814bad1f/cells-11-01409-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/517c42d3b798/cells-11-01409-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/4379705ec400/cells-11-01409-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/c1c1a4e5c482/cells-11-01409-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/eda866505965/cells-11-01409-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/75721336a99e/cells-11-01409-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/0a675c4a8db1/cells-11-01409-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/8e7baff9583b/cells-11-01409-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/a6d0d38a5da4/cells-11-01409-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/2b997a0b5c93/cells-11-01409-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/eacff33b1ac0/cells-11-01409-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/6b617880f67c/cells-11-01409-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/a177f4214534/cells-11-01409-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/b50a24e98689/cells-11-01409-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/57e0814bad1f/cells-11-01409-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/517c42d3b798/cells-11-01409-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/4379705ec400/cells-11-01409-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/c1c1a4e5c482/cells-11-01409-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/eda866505965/cells-11-01409-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/75721336a99e/cells-11-01409-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/0a675c4a8db1/cells-11-01409-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ee/9102408/8e7baff9583b/cells-11-01409-g014.jpg

相似文献

[1]
Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats.

Cells. 2022-4-21

[2]
The association of traumatic brain injury, gut microbiota and the corresponding metabolites in mice.

Brain Res. 2021-7-1

[3]
Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury.

Oxid Med Cell Longev. 2021

[4]
Traumatic Brain Injury in Mice Induces Acute Bacterial Dysbiosis Within the Fecal Microbiome.

Front Immunol. 2018-11-27

[5]
Temporal shifts to the gut microbiome associated with cognitive dysfunction following high-fat diet consumption in a juvenile model of traumatic brain injury.

Physiol Genomics. 2024-4-1

[6]
Probiotic therapy modulates the brain-gut-liver microbiota axis in a mouse model of traumatic brain injury.

Biochim Biophys Acta Mol Basis Dis. 2024-12

[7]
The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

Brain Behav Immun. 2017-5-17

[8]
Traumatic Brain Injury Induces Gastrointestinal Dysfunction and Dysbiosis of Gut Microbiota Accompanied by Alterations of Bile Acid Profile.

J Neurotrauma. 2022-1

[9]
Altered Fecal Microbiome Years after Traumatic Brain Injury.

J Neurotrauma. 2020-4-15

[10]
The Impact of Traumatic Brain Injury on Microbiome Composition: A Systematic Review.

Biol Res Nurs. 2020-10

引用本文的文献

[1]
Distinct Gut Microbiota Profiles in Unruptured and Ruptured Intracranial Aneurysms: Focus on Butyrate-Producing Bacteria.

J Clin Med. 2025-5-16

[2]
Systemic IGF-1 administration prevents traumatic brain injury induced gut permeability, dysmorphia, dysbiosis, and the increased number of immature dentate granule cells.

Acta Neuropathol Commun. 2025-5-3

[3]
Traumatic Brain Injury and Gut Microbiome: The Role of the Gut-Brain Axis in Neurodegenerative Processes.

Curr Neurol Neurosci Rep. 2025-3-15

[4]
The Role of Macronutrients and Gut Microbiota in Neuroinflammation Post-Traumatic Brain Injury: A Narrative Review.

Nutrients. 2024-12-18

[5]
Research progress on the relationship between traumatic brain injury and brain-gut-microbial axis.

Ibrain. 2024-3-30

[6]
Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators.

Neurochem Res. 2024-11-14

[7]
The Gut-Brain Axis and Neuroinflammation in Traumatic Brain Injury.

Mol Neurobiol. 2025-4

[8]
Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury.

Neural Regen Res. 2025-8-1

[9]
Probiotics in Traumatic Brain Injury: New Insights into Mechanisms and Future Perspectives.

J Clin Med. 2024-8-3

[10]
Metabolome-Wide Mendelian Randomization Assessing the Causal Role of Serum and Cerebrospinal Metabolites in Traumatic Brain Injury.

Biomedicines. 2024-5-25

本文引用的文献

[1]
Alterations to the gut microbiome after sport-related concussion in a collegiate football players cohort: A pilot study.

Brain Behav Immun Health. 2022-3-1

[2]
Oral Administration of Brain Protein Combined With Probiotics Induces Immune Tolerance Through the Tryptophan Pathway.

Front Mol Neurosci. 2021-5-28

[3]
Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities.

mSystems. 2021-5-11

[4]
The association of traumatic brain injury, gut microbiota and the corresponding metabolites in mice.

Brain Res. 2021-7-1

[5]
Traumatic Brain Injury Induces Gastrointestinal Dysfunction and Dysbiosis of Gut Microbiota Accompanied by Alterations of Bile Acid Profile.

J Neurotrauma. 2022-1

[6]
Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury.

Oxid Med Cell Longev. 2021

[7]
Non-oral Prevotella stepping into the spotlight.

Anaerobe. 2021-4

[8]
The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents.

Neurobiol Pain. 2020-12-18

[9]
The gut microbiota-brain axis in behaviour and brain disorders.

Nat Rev Microbiol. 2021-4

[10]
The Gut Microbiota and Associated Metabolites Are Altered in Sleep Disorder of Children With Autism Spectrum Disorders.

Front Psychiatry. 2020-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索