Suppr超能文献

脊髓损伤会改变肠道细菌和病毒群落的结构及功能潜力。

Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities.

作者信息

Du Jingjie, Zayed Ahmed A, Kigerl Kristina A, Zane Kylie, Sullivan Matthew B, Popovich Phillip G

机构信息

Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.

Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA.

出版信息

mSystems. 2021 May 11;6(3):e01356-20. doi: 10.1128/mSystems.01356-20.

Abstract

Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most ( = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals ( and spp.) decreased, while potentially pathogenic bacteria (, ) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (, and ) decreased, while phages of pathogenic hosts (, and class ) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis. To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.

摘要

新出现的数据表明,肠道微生物群失调与许多人类疾病有关,包括创伤性脊髓损伤(SCI)后出现的几种合并症。迄今为止,所有关于SCI诱导的肠道微生物群失调的分析都使用了16S rRNA扩增子测序。该技术有几个局限性,包括易受分类学“盲点”、引物偏差的影响,以及无法分析微生物群功能或识别病毒。在这里,通过对实验性SCI后21天在第4胸椎(T4)或第10胸椎(T10)脊髓水平收集的小鼠粪便样本进行基因组和基因解析宏基因组分析,评估SCI诱导的肠道微生物群失调。这些不同的损伤部分(T10)或完全(T4)消除了肠道中的交感神经张力。在细菌方面,共获得了105个中高质量的宏基因组组装基因组(MAG),其中大多数(=96)代表新的细菌物种。读数映射显示,SCI后,有益共生菌(和属)的相对丰度下降,而潜在致病菌(、)增加。在功能上,SCI后,编码色氨酸、维生素B和叶酸生物合成蛋白的微生物基因减少,而这些是中枢神经系统功能的重要途径。在病毒方面,共获得了1028个大多为新的病毒群体,与公共数据库相比,已知小鼠肠道病毒物种的序列空间扩大了约3倍。SCI后,有益共生宿主(、和)的噬菌体减少,而致病宿主(、和类)的噬菌体增加。尽管所有SCI小鼠的微生物组和病毒组都发生了变化,但其中一些变化因脊髓损伤水平而异,这表明交感神经张力丧失是肠道微生物群失调的潜在机制。据我们所知,这是第一篇应用宏基因组学来表征由中枢神经系统(CNS)创伤的临床相关模型引起的肠道微生物种群动态变化的文章。它还利用了基因组解析宏基因组学和病毒组学中的最新方法,以最大限度地从这些数据中得出生物学推论。总体而言,本文强调了创伤性脊髓损伤(SCI)后自主神经系统对远端器官(肠道)及其微生物群落的调节作用。通过提供有关分类学、功能和病毒的信息,宏基因组数据可以更好地预测SCI诱导的肠道微生物群失调如何影响SCI后的全身和神经学结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c486/8125080/049fd829e0fd/mSystems.01356-20-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验