Suppr超能文献

碲化镉量子点的直接激光图案化及其通过激光参数对光学性质的控制

Direct Laser Patterning of CdTe QDs and Their Optical Properties Control through Laser Parameters.

作者信息

Antolini Francesco, Limosani Francesca, Carcione Rocco

机构信息

Fusion and Technologies for Nuclear Safety and Security Department, Physical Technologies for Safety and Health Division, Photonics Micro and Nanostructures Laboratory, ENEA C.R. Frascati, via Enrico Fermi 45, 00044 Frascati (RM), Italy.

Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 1, 60131 Ancona, Italy.

出版信息

Nanomaterials (Basel). 2022 May 4;12(9):1551. doi: 10.3390/nano12091551.

Abstract

Direct laser patterning is a potential and powerful technique to localize nanomaterials within a host matrix. The main goal of this study is to demonstrate that by tuning some parameters of a laser source, like power and laser pulse frequency, it is possible to modify and tune the optical properties of the generated quantum dots (QDs) within a host matrix of a specific chemical composition. The study is realized by using cadmium telluride (CdTe) QD precursors, embedded in polymethylmethacrylate (PMMA) host matrix, as starting materials. The patterning of the CdTe QDs is carried out by using a UV nanosecond laser source at 355. Fluorescence microscopy and photoluminescence spectroscopy, associated with transmission electron microscopy, indicate that it is possible to obtain desired patterns of QDs emitting from green to red of the visible spectrum, due to the formed CdTe QDs. Preliminary highlights of the CdTe QDs' formation mechanism are given in terms of laser power and laser pulse frequency (repetition rate).

摘要

直接激光图案化是一种在主体基质中定位纳米材料的潜在且强大的技术。本研究的主要目标是证明,通过调整激光源的一些参数,如功率和激光脉冲频率,可以在特定化学成分的主体基质中改变和调整所生成量子点(QD)的光学性质。该研究以嵌入聚甲基丙烯酸甲酯(PMMA)主体基质中的碲化镉(CdTe)量子点前驱体作为起始材料来实现。CdTe量子点的图案化是通过使用波长为355nm的紫外纳秒激光源进行的。与透射电子显微镜相关联的荧光显微镜和光致发光光谱表明,由于形成了CdTe量子点,有可能获得从可见光谱的绿色到红色发射的所需量子点图案。根据激光功率和激光脉冲频率(重复率)给出了CdTe量子点形成机制的初步要点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e71c/9103134/29b62ad1aec9/nanomaterials-12-01551-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验