Gad Haidy A, Mukhammadiev Elbek A, Zengen Gokhan, Musayeib Nawal M Al, Hussain Hidayat, Bin Ware Ismail, Ashour Mohamed L, Mamadalieva Nilufar Z
Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
Institute of the Chemistry of Plant Substances, Academy of Sciences of RUz, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan.
Plants (Basel). 2022 Apr 29;11(9):1215. doi: 10.3390/plants11091215.
The chemical composition of the essential oils (EOs) of , and growing in Uzbekistan were determined, and their antioxidant and enzyme inhibitory activity were assessed. A gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of 143 metabolites accounting for 70.34, 76.78 and 88.63% of the total identified components of , and respectively. Octadecanal (9.37%) was the most predominant in . However, n-butyl octadecenoate (4.92%) was the major volatile in Benzaldehyde (5.01%) was present at a higher percentage in A chemometric analysis revealed the ability of volatile profiling to discriminate between the studied species. The principal component analysis plot displayed a clear diversity of species where the octadecanal and benzaldehyde were the main discriminating markers. The antioxidant activity was evaluated in vitro using 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2-azino bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing power (FRAP), chelating and phosphomolybdenum (PBD). Moreover, the ability of the essential oils to inhibit both acetyl/butyrylcholinesterases (AChE and BChE), α-amylase, α-glucosidase and tyrosinase was assessed. The volatiles from exhibited the highest activity in both the ABTS (226.48 ± 1.75 mg Trolox equivalent (TE)/g oil) and FRAP (109.55 ± 3.24 mg TE/g oil) assays. However, displayed the strongest activity in the other assays (174.94 ± 0.20 mg TE/g oil for CUPRAC, 60.11 ± 0.36 mg EDTA equivalent (EDTAE)/g oil for chelating and 28.24 ± 1.00 (mmol TE/g oil) for PBD. Regarding the enzyme inhibitory activity, demonstrated the strongest AChE (5.64 ± 0.04 mg galantamine equivalent (GALAE)/g oil) and tyrosinase inhibitory (101.07 ± 0.60 mg kojic acid equivalent (KAE)/g) activity. The highest activity for BChE (11.18 ± 0.19 mg GALAE/g oil), amylase inhibition (0.76 ± 0.02 mmol acarbose equivalent (ACAE)/g oil) and glucosidase inhibition (24.11 ± 0.06 mmol ACAE/g oil) was observed in . These results showed that EOs of species could be used as antioxidant, hypoglycemic and skincare agents.
对生长在乌兹别克斯坦的[植物名称1]、[植物名称2]和[植物名称3]的精油化学成分进行了测定,并评估了它们的抗氧化和酶抑制活性。气相色谱 - 质谱联用(GC - MS)分析显示,分别有143种代谢物,占[植物名称1]、[植物名称2]和[植物名称3]已鉴定成分总量的70.34%、76.78%和88.63%。十八醛(9.37%)在[植物名称1]中最为主要。然而,正丁基十八碳烯酸酯(4.92%)是[植物名称2]中的主要挥发性成分。苯甲醛(5.01%)在[植物名称3]中的含量较高。化学计量分析表明挥发性成分分析能够区分所研究的[植物名称]物种。主成分分析图显示[植物名称]物种具有明显的多样性,其中十八醛和苯甲醛是主要的鉴别标志物。使用2,2 - 二苯基 - 1 - 苦基肼(DPPH)、2,2 - 联氮 - 双 -(3 - 乙基苯并噻唑啉 - 6 - 磺酸)(ABTS)、铜离子还原抗氧化能力(CUPRAC)、铁离子还原能力(FRAP)、螯合能力和磷钼酸(PBD)体外评估抗氧化活性。此外,还评估了精油抑制乙酰/丁酰胆碱酯酶(AChE和BChE)、α - 淀粉酶、α - 葡萄糖苷酶和酪氨酸酶的能力。[植物名称1]的挥发物在ABTS(226.48±1.75毫克特罗克斯当量(TE)/克油)和FRAP(109.55±3.24毫克TE/克油)测定中表现出最高活性。然而,[植物名称2]在其他测定中表现出最强活性(CUPRAC为174.94±0.20毫克TE/克油,螯合能力为60.11±0.36毫克乙二胺四乙酸当量(EDTAE)/克油,PBD为28.24±1.00(毫摩尔TE/克油))。关于酶抑制活性,[植物名称3]表现出最强的AChE(5.64±0.04毫克加兰他敏当量(GALAE)/克油)和酪氨酸酶抑制(101.07±0.60毫克曲酸当量(KAE)/克)活性。在[植物名称2]中观察到BChE的最高活性(11.18±0.19毫克GALAE/克油)、淀粉酶抑制(0.76±0.02毫摩尔阿卡波糖当量(ACAE)/克油)和葡萄糖苷酶抑制(24.11±0.06毫摩尔ACAE/克油)。这些结果表明,[植物名称]物种的精油可作为抗氧化剂、降血糖剂和护肤品。