Suppr超能文献

变分自编码器提供了一个概念验证,即将 CDT 压缩到极低维空间仍然保留其区分痴呆症的能力。

Variational autoencoder provides proof of concept that compressing CDT to extremely low-dimensional space retains its ability of distinguishing dementia.

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, USA.

Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA.

出版信息

Sci Rep. 2022 May 14;12(1):7992. doi: 10.1038/s41598-022-12024-8.

Abstract

The clock drawing test (CDT) is an inexpensive tool to screen for dementia. In this study, we examined if a variational autoencoder (VAE) with only two latent variables can capture and encode clock drawing anomalies from a large dataset of unannotated CDTs (n = 13,580) using self-supervised pre-training and use them to classify dementia CDTs (n = 18) from non-dementia CDTs (n = 20). The model was independently validated using a larger cohort consisting of 41 dementia and 50 non-dementia clocks. The classification model built with the parsimonious VAE latent space adequately classified dementia from non-dementia (0.78 area under receiver operating characteristics (AUROC) in the original test dataset and 0.77 AUROC in the secondary validation dataset). The VAE-identified atypical clock features were then reviewed by domain experts and compared with existing literature on clock drawing errors. This study shows that a very small number of latent variables are sufficient to encode important clock drawing anomalies that are predictive of dementia.

摘要

画钟测验(CDT)是一种用于筛查痴呆的廉价工具。在本研究中,我们使用自监督预训练,检查了只有两个潜在变量的变分自动编码器(VAE)是否可以从大量未注释的 CDT 数据集中(n=13580)捕捉和编码画钟异常,并使用它们来对痴呆症 CDT(n=18)与非痴呆症 CDT(n=20)进行分类。该模型使用由 41 名痴呆症患者和 50 名非痴呆症患者组成的更大队列进行了独立验证。使用简洁的 VAE 潜在空间构建的分类模型能够很好地区分痴呆症与非痴呆症(原始测试数据集中的接收器操作特征(AUROC)为 0.78,次要验证数据集中的 AUROC 为 0.77)。然后,领域专家审查了 VAE 识别的异常时钟特征,并与现有的画钟错误文献进行了比较。这项研究表明,少量的潜在变量足以编码对痴呆症具有预测性的重要画钟异常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c447/9107463/7f0b6651dd99/41598_2022_12024_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验