Suppr超能文献

灵活高效的贝叶斯药物代谢动力学建模使用 Stan 和 Torsten,第一部分。

Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I.

机构信息

Department of Statistics, Columbia University (formerly Metrum Research Group, Inc.), New York, New York, USA.

Metrum Research Group, Inc., Tariffville, Connecticut, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Sep;11(9):1151-1169. doi: 10.1002/psp4.12812. Epub 2022 Jun 23.

Abstract

Stan is an open-source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state-of-the-art gradient computation. Stan's strengths include efficient computation, an expressive language that offers a great deal of flexibility, and numerous diagnostics that allow modelers to check whether the inference is reliable. Torsten extends Stan with a suite of functions that facilitate the specification of pharmacokinetic and pharmacodynamic models and makes it straightforward to specify a clinical event schedule. Part I of this tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic and pharmacodynamic models using Stan and Torsten.

摘要

Stan 是一个开源的概率编程语言,主要用于贝叶斯数据分析。其主要的推断算法是自适应 Hamiltonian Monte Carlo 抽样器,支持最先进的梯度计算。Stan 的优势包括高效计算、表达能力强、灵活性大,以及大量的诊断工具,允许建模者检查推断是否可靠。Torsten 用一系列函数扩展了 Stan,这些函数简化了药代动力学和药效动力学模型的指定,并使指定临床事件计划变得简单。本教程的第一部分演示了如何使用 Stan 和 Torsten 构建、拟合和批评标准药代动力学和药效动力学模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d295/9469701/70cb6f95752d/PSP4-11-1151-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验