Department of Statistics, Columbia University (formerly Metrum Research Group, Inc.), New York, New York, USA.
Metrum Research Group, Inc., Tariffville, Connecticut, USA.
CPT Pharmacometrics Syst Pharmacol. 2022 Sep;11(9):1151-1169. doi: 10.1002/psp4.12812. Epub 2022 Jun 23.
Stan is an open-source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state-of-the-art gradient computation. Stan's strengths include efficient computation, an expressive language that offers a great deal of flexibility, and numerous diagnostics that allow modelers to check whether the inference is reliable. Torsten extends Stan with a suite of functions that facilitate the specification of pharmacokinetic and pharmacodynamic models and makes it straightforward to specify a clinical event schedule. Part I of this tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic and pharmacodynamic models using Stan and Torsten.
Stan 是一个开源的概率编程语言,主要用于贝叶斯数据分析。其主要的推断算法是自适应 Hamiltonian Monte Carlo 抽样器,支持最先进的梯度计算。Stan 的优势包括高效计算、表达能力强、灵活性大,以及大量的诊断工具,允许建模者检查推断是否可靠。Torsten 用一系列函数扩展了 Stan,这些函数简化了药代动力学和药效动力学模型的指定,并使指定临床事件计划变得简单。本教程的第一部分演示了如何使用 Stan 和 Torsten 构建、拟合和批评标准药代动力学和药效动力学模型。