文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Pharmacological properties of biomimetic synthesized silver nanoparticles from endophytic fungus Coniothyrium chaingmaiense: KUMBMDBT-25.

作者信息

Dadayya Manjunatha, Thippeswamy Megha Gowri, Shivaiah Nagaraju, Siddaraju Thoyajakshi Ramasamudra, Jayaramaiah Prakash, Veeranna Sowmya Hirakannavar, Basaiah Thippeswamy, Mathad Shridhar N, Hemagiri Gowda Ravikumar, Naik Sachin, Kheraif Abdulaziz Abdullah Ai, Vellappally Sajith

机构信息

Department of P.G. Studies and Research in Microbiology, Bioscience Complex, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India.

Department of P.G. Studies and Research in Biochemistry, Kuvempu University, Shivamogga Dist, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India.

出版信息

Sci Rep. 2025 Jan 3;15(1):606. doi: 10.1038/s41598-024-76475-x.


DOI:10.1038/s41598-024-76475-x
PMID:39753586
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11698845/
Abstract

In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods. The synthesis was confirmed by Bio- spectrophotometry, which showed an absorption peak at 404 nm. FTIR analysis verified the reduction and capping of Con-AgNPs, displaying peaks corresponding to various functional groups. SEM-EDAX and HR-TEM examinations revealed that the Con-AgNPs were spherical, and EDAX analysis confirmed the presence of silver atoms at 3 keV. XRD studies revealed the crystalline structure of Con-AgNPs. DLS and Zeta potential tests determined the size and stability of the synthesized Con-AgNPs, which were 65.81 nm. The Con-AgNPs demonstrated strong antibacterial activity against P. aeruginosa (14.06 ± 0.11 mm, 10 mg/mL) and effective antifungal activity against A. flavus (13.03 ± 0.05 mm, 10 mg/mL). Con-AgNPs exhibited notable biological attributes, including a cytotoxic effect of up to 38.82% and 19.15% at 200 µg/mL in an MTT assay measuring cell viability. Additionally, the nanoparticles demonstrated significant anti-inflammatory effects in both in vitro and in vivo studies, validating the biological and pharmacological potential of Con-AgNPs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1214fcdd6be1/41598_2024_76475_Fig32_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/cb01ef5947a9/41598_2024_76475_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/585d588c3b71/41598_2024_76475_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/8bcdd3071e39/41598_2024_76475_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/bb97d7c09e7c/41598_2024_76475_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/9fe689669945/41598_2024_76475_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1bfab8a2e682/41598_2024_76475_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/5babe1dd449a/41598_2024_76475_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/abcb533d5ffa/41598_2024_76475_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/ed367c2db4f6/41598_2024_76475_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/9cceba4942cf/41598_2024_76475_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/d8b0dd7d5d7d/41598_2024_76475_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/00dbe154c769/41598_2024_76475_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/2d0f9ceca801/41598_2024_76475_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/f28f261a614b/41598_2024_76475_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/fe4996f773d6/41598_2024_76475_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/f3c903c1528d/41598_2024_76475_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/3a10f1ba1d04/41598_2024_76475_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/0b2ea5168781/41598_2024_76475_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/bde0e2cf92fd/41598_2024_76475_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/4685b0e9fc45/41598_2024_76475_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/bb8ff5e4a33c/41598_2024_76475_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/e5ac9fe83615/41598_2024_76475_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/84c507cdfa79/41598_2024_76475_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/c80190f2d0f6/41598_2024_76475_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/6cd36628e4f4/41598_2024_76475_Fig25_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1f66164b2ae3/41598_2024_76475_Fig26_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/d7595181f71d/41598_2024_76475_Fig27_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/830c33d222e7/41598_2024_76475_Fig28_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/f1a0e2169a36/41598_2024_76475_Fig29_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/d992eec93131/41598_2024_76475_Fig30_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/29574f69ed47/41598_2024_76475_Fig31_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1214fcdd6be1/41598_2024_76475_Fig32_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/cb01ef5947a9/41598_2024_76475_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/585d588c3b71/41598_2024_76475_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/8bcdd3071e39/41598_2024_76475_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/bb97d7c09e7c/41598_2024_76475_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/9fe689669945/41598_2024_76475_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1bfab8a2e682/41598_2024_76475_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/5babe1dd449a/41598_2024_76475_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/abcb533d5ffa/41598_2024_76475_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/ed367c2db4f6/41598_2024_76475_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/9cceba4942cf/41598_2024_76475_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/d8b0dd7d5d7d/41598_2024_76475_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/00dbe154c769/41598_2024_76475_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/2d0f9ceca801/41598_2024_76475_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/f28f261a614b/41598_2024_76475_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/fe4996f773d6/41598_2024_76475_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/f3c903c1528d/41598_2024_76475_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/3a10f1ba1d04/41598_2024_76475_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/0b2ea5168781/41598_2024_76475_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/bde0e2cf92fd/41598_2024_76475_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/4685b0e9fc45/41598_2024_76475_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/bb8ff5e4a33c/41598_2024_76475_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/e5ac9fe83615/41598_2024_76475_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/84c507cdfa79/41598_2024_76475_Fig23_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/c80190f2d0f6/41598_2024_76475_Fig24_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/6cd36628e4f4/41598_2024_76475_Fig25_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1f66164b2ae3/41598_2024_76475_Fig26_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/d7595181f71d/41598_2024_76475_Fig27_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/830c33d222e7/41598_2024_76475_Fig28_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/f1a0e2169a36/41598_2024_76475_Fig29_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/d992eec93131/41598_2024_76475_Fig30_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/29574f69ed47/41598_2024_76475_Fig31_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e4/11698845/1214fcdd6be1/41598_2024_76475_Fig32_HTML.jpg

相似文献

[1]
Pharmacological properties of biomimetic synthesized silver nanoparticles from endophytic fungus Coniothyrium chaingmaiense: KUMBMDBT-25.

Sci Rep. 2025-1-3

[2]
Eco-friendly synthesized silver nanoparticles from endophytic fungus Phyllosticta owaniana: KUMBMDBT-32 and evaluation of biomedical properties.

Arch Microbiol. 2023-5-2

[3]
Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus .

Int J Nanomedicine. 2019-5-9

[4]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[5]
Anti-Bacterial and Anti-Candidal Activity of Silver Nanoparticles Biosynthesized Using spp. MS5 Culture Supernatant.

Biomolecules. 2020-6-22

[6]
Antimicrobial, Quorum Sensing Inhibition, and Anti-Cancer Activities of Silver Nanoparticles Synthesized from Kenyan Bacterial Endophytes of .

Int J Mol Sci. 2025-4-2

[7]
Antifungal, Antibacterial, and Cytotoxic Activities of Silver Nanoparticles Synthesized from Aqueous Extracts of Mace-Arils of .

Molecules. 2021-12-20

[8]
Green Fabrication of Silver Nanoparticles using Kunth Aqueous Extract, Their Characterization, and Investigation of Its Antioxidative, Antimicrobial, Insecticidal, and Cytotoxic Activities.

Biomed Res Int. 2022

[9]
Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.

Microb Pathog. 2017-12-5

[10]
Green synthesis of silver nanoparticles employing hamdard joshanda extract: putative antimicrobial potential against gram positive and gram negative bacteria.

Biometals. 2024-4

本文引用的文献

[1]
-Driven Novel Biosynthesis of Tin Oxide Nanoparticles and Evaluation of Their Anti-aging, Cytotoxic, and Enzyme Inhibition Potential.

ACS Omega. 2023-7-17

[2]
Exploring the Antimicrobial, Anticancer, and Apoptosis Inducing Ability of Biofabricated Silver Nanoparticles Using Flower Buds against the Human Osteosarcoma (MG-63) Cell Line via Flow Cytometry.

Bioengineering (Basel). 2023-7-10

[3]
Penicillium citrinum NP4 mediated production, extraction, physicochemical characterization of the melanin, and its anticancer, apoptotic, photoprotection properties.

Int J Biol Macromol. 2023-8-1

[4]
GC-MS Based Characterization, Antibacterial, Antifungal and Anti-Oncogenic Activity of Ethyl Acetate Extract of Strain AK-6 Isolated from Rhizospheric Soil.

Curr Issues Mol Biol. 2023-4-24

[5]
Aspergillus niger CJ6 extract with antimicrobial potential promotes in-vitro cytotoxicity and induced apoptosis against MIA PaCa-2 cell line.

Environ Res. 2023-7-15

[6]
Myco-Nanofabrication of Silver Nanoparticles by NP5 and Their Antimicrobial, Photoprotective and Anticancer Effect on MDA-MB-231 Breast Cancer Cell Line.

Antibiotics (Basel). 2023-3-13

[7]
Flower Bud Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization, and Evaluation of Biological Applications.

Materials (Basel). 2022-12-16

[8]
Development of Iron Nanoparticles (FeNPs) Using Biomass of Its Characterization, Antimicrobial, Anti-Alzheimer's, and Enzyme Inhibition Potential.

Micromachines (Basel). 2022-8-5

[9]
Driven Synthesis of Zinc Oxide Nano Material Its Characterization and Biomedical Applications.

Micromachines (Basel). 2022-4-24

[10]
Paraclostridium benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications.

Oxid Med Cell Longev. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索