Dadayya Manjunatha, Thippeswamy Megha Gowri, Shivaiah Nagaraju, Siddaraju Thoyajakshi Ramasamudra, Jayaramaiah Prakash, Veeranna Sowmya Hirakannavar, Basaiah Thippeswamy, Mathad Shridhar N, Hemagiri Gowda Ravikumar, Naik Sachin, Kheraif Abdulaziz Abdullah Ai, Vellappally Sajith
Department of P.G. Studies and Research in Microbiology, Bioscience Complex, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India.
Department of P.G. Studies and Research in Biochemistry, Kuvempu University, Shivamogga Dist, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India.
Sci Rep. 2025 Jan 3;15(1):606. doi: 10.1038/s41598-024-76475-x.
In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods. The synthesis was confirmed by Bio- spectrophotometry, which showed an absorption peak at 404 nm. FTIR analysis verified the reduction and capping of Con-AgNPs, displaying peaks corresponding to various functional groups. SEM-EDAX and HR-TEM examinations revealed that the Con-AgNPs were spherical, and EDAX analysis confirmed the presence of silver atoms at 3 keV. XRD studies revealed the crystalline structure of Con-AgNPs. DLS and Zeta potential tests determined the size and stability of the synthesized Con-AgNPs, which were 65.81 nm. The Con-AgNPs demonstrated strong antibacterial activity against P. aeruginosa (14.06 ± 0.11 mm, 10 mg/mL) and effective antifungal activity against A. flavus (13.03 ± 0.05 mm, 10 mg/mL). Con-AgNPs exhibited notable biological attributes, including a cytotoxic effect of up to 38.82% and 19.15% at 200 µg/mL in an MTT assay measuring cell viability. Additionally, the nanoparticles demonstrated significant anti-inflammatory effects in both in vitro and in vivo studies, validating the biological and pharmacological potential of Con-AgNPs.
Artif Cells Nanomed Biotechnol. 2017-8-8
Micromachines (Basel). 2022-4-24