Sanchez Rezza Angela, Kulahci Yalcin, Gorantla Vijay S, Zor Fatih, Drzeniek Norman M
Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.
Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States.
Front Bioeng Biotechnol. 2022 Apr 27;10:863969. doi: 10.3389/fbioe.2022.863969. eCollection 2022.
The use of autografted nerve in surgical repair of peripheral nerve injuries (PNI) is severely limited due to donor site morbidity and restricted tissue availability. As an alternative, synthetic nerve guidance channels (NGCs) are available on the market for surgical nerve repair, but they fail to promote nerve regeneration across larger critical gap nerve injuries. Therefore, such injuries remain unaddressed, result in poor healing outcomes and are a limiting factor in limb reconstruction and transplantation. On the other hand, a myriad of advanced biomaterial strategies to address critical nerve injuries are proposed in preclinical literature but only few of those have found their way into clinical practice. The design of synthetic nerve grafts should follow rational criteria and make use of a combination of bioinstructive cues to actively promote nerve regeneration. To identify the most promising NGC designs for translation into applicable products, thorough mode of action studies, standardized readouts and validation in large animals are needed. We identify design criteria for NGC fabrication according to the current state of research, give a broad overview of bioactive and functionalized biomaterials and highlight emerging composite implant strategies using therapeutic cells, soluble factors, structural features and intrinsically conductive substrates. Finally, we discuss translational progress in bioartificial conduits for nerve repair from the surgeon's perspective and give an outlook toward future challenges in the field.
由于供体部位的并发症和有限的组织可用性,自体神经在周围神经损伤(PNI)手术修复中的应用受到严重限制。作为一种替代方法,合成神经引导通道(NGC)已在市场上用于手术神经修复,但它们无法促进跨越较大临界间隙神经损伤的神经再生。因此,此类损伤仍然无法得到解决,导致愈合效果不佳,并且是肢体重建和移植的限制因素。另一方面,临床前文献中提出了无数用于解决严重神经损伤的先进生物材料策略,但其中只有少数已进入临床实践。合成神经移植物的设计应遵循合理的标准,并利用生物指导性线索的组合来积极促进神经再生。为了确定最有前途的NGC设计以转化为适用产品,需要进行深入的作用机制研究、标准化的读数以及在大型动物中的验证。我们根据当前的研究状况确定了NGC制造的设计标准,对生物活性和功能化生物材料进行了广泛概述,并强调了使用治疗性细胞、可溶性因子、结构特征和本征导电基质的新兴复合植入策略。最后,我们从外科医生的角度讨论了用于神经修复的生物人工导管的转化进展,并展望了该领域未来的挑战。