Sénépart Océane, Legay Claire, Hamraoui Ahmed
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France.
Biophys Rev (Melville). 2025 Apr 30;6(2):021301. doi: 10.1063/5.0237085. eCollection 2025 Jun.
To create functional neuronal circuit units during nervous system development and/or regeneration, axons are subjected to guidance signals. Expression of these signals occurs in spatiotemporal variations and is translated by the growth cone into a pathway to reach the connecting target which can be a neuron or a non-neuronal cell such as a muscle cell. This path is generated by interactions with the surrounding environment such as cells or the extracellular matrix, a complex molecular substrate. Understanding the interactions with this last component is essential to stimulate nerve regeneration in the context of motor peripheral nerve trauma, the most common source of disabilities, increasing with aging. The goal is to mimic its composition and specific characteristics using innovative biomaterials and/or implants. This review highlights some aspects of the recent findings in nerve repair. After an introduction to the peripheral nervous system, we present an overview of nerve degeneration and regeneration mechanisms before detailing the strategies used nowadays to optimize nerve (re)growth with a specific focus on the use of electric field. We discuss the advantages and limits of each option in terms of therapeutic applications.
在神经系统发育和/或再生过程中,为了创建功能性神经元回路单元,轴突会受到导向信号的作用。这些信号的表达呈现出时空变化,并被生长锥转化为一条通向连接靶点的路径,该靶点可以是神经元,也可以是诸如肌肉细胞等非神经元细胞。这条路径是通过与周围环境(如细胞或细胞外基质,一种复杂的分子底物)相互作用而产生的。了解与这最后一个成分的相互作用对于在运动性周围神经损伤(最常见的致残原因,且随着年龄增长而增加)的背景下刺激神经再生至关重要。目标是使用创新的生物材料和/或植入物来模拟其组成和特定特性。本综述重点介绍了神经修复方面的一些最新研究成果。在介绍了周围神经系统之后,我们概述了神经变性和再生机制,然后详细阐述了目前用于优化神经(再)生长的策略,特别关注电场的应用。我们从治疗应用的角度讨论了每种选择的优缺点。