Suppr超能文献

青光眼的多特征分析与深度学习技术诊断。

Glaucoma diagnosis using multi-feature analysis and a deep learning technique.

机构信息

School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, 2052, Australia.

School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW, 2052, Australia.

出版信息

Sci Rep. 2022 May 16;12(1):8064. doi: 10.1038/s41598-022-12147-y.

Abstract

In this study, we aimed to facilitate the current diagnostic assessment of glaucoma by analyzing multiple features and introducing a new cross-sectional optic nerve head (ONH) feature from optical coherence tomography (OCT) images. The data (n = 100 for both glaucoma and control) were collected based on structural, functional, demographic and risk factors. The features were statistically analyzed, and the most significant four features were used to train machine learning (ML) algorithms. Two ML algorithms: deep learning (DL) and logistic regression (LR) were compared in terms of the classification accuracy for automated glaucoma detection. The performance of the ML models was evaluated on unseen test data, n = 55. An image segmentation pilot study was then performed on cross-sectional OCT scans. The ONH cup area was extracted, analyzed, and a new DL model was trained for glaucoma prediction. The DL model was estimated using five-fold cross-validation and compared with two pre-trained models. The DL model trained from the optimal features achieved significantly higher diagnostic performance (area under the receiver operating characteristic curve (AUC) 0.98 and accuracy of 97% on validation data and 96% on test data) compared to previous studies for automated glaucoma detection. The second DL model used in the pilot study also showed promising outcomes (AUC 0.99 and accuracy of 98.6%) to detect glaucoma compared to two pre-trained models. In combination, the result of the two studies strongly suggests the four features and the cross-sectional ONH cup area trained using deep learning have a great potential for use as an initial screening tool for glaucoma which will assist clinicians in making a precise decision.

摘要

在这项研究中,我们旨在通过分析多个特征并从光学相干断层扫描(OCT)图像中引入新的视神经头(ONH)的横截面特征,来促进当前的青光眼诊断评估。数据(青光眼和对照组各 100 例)是根据结构、功能、人口统计学和危险因素收集的。对特征进行了统计学分析,使用最显著的四个特征来训练机器学习(ML)算法。从自动青光眼检测的分类准确性方面,比较了两种机器学习算法:深度学习(DL)和逻辑回归(LR)。然后,在横截面 OCT 扫描上进行了图像分割初步研究。提取、分析了 ONH 杯面积,并为青光眼预测训练了一个新的 DL 模型。使用五折交叉验证对 DL 模型进行了估计,并与两个预训练模型进行了比较。与之前的自动化青光眼检测研究相比,从最佳特征中训练的 DL 模型在验证数据上的诊断性能(接收者操作特征曲线下面积(AUC)为 0.98,准确率为 97%,在测试数据上的准确率为 96%)显著更高。在初步研究中使用的第二个 DL 模型与两个预训练模型相比,也显示出了有希望的结果(AUC 为 0.99,准确率为 98.6%),可用于检测青光眼。综合这两项研究的结果强烈表明,这四个特征和使用深度学习训练的横截面 ONH 杯面积非常有潜力作为青光眼的初始筛查工具,这将有助于临床医生做出更准确的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e3/9110703/dcfb5d186d1e/41598_2022_12147_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验