Suppr超能文献

亮点:种子非负矩阵分解回归用于用单细胞转录组对空间转录组学斑点进行反卷积

SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes.

作者信息

Elosua-Bayes Marc, Nieto Paula, Mereu Elisabetta, Gut Ivo, Heyn Holger

机构信息

CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Universitat Pompeu Fabra (UPF), Barcelona, Spain.

出版信息

Nucleic Acids Res. 2021 May 21;49(9):e50. doi: 10.1093/nar/gkab043.

Abstract

Spatially resolved gene expression profiles are key to understand tissue organization and function. However, spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots). Simulating varying reference quantities and qualities, we confirmed high prediction accuracy also with shallowly sequenced or small-sized scRNA-seq reference datasets. SPOTlight deconvolution of the mouse brain correctly mapped subtle neuronal cell states of the cortical layers and the defined architecture of the hippocampus. In human pancreatic cancer, we successfully segmented patient sections and further fine-mapped normal and neoplastic cell states. Trained on an external single-cell pancreatic tumor references, we further charted the localization of clinical-relevant and tumor-specific immune cell states, an illustrative example of its flexible application spectrum and future potential in digital pathology.

摘要

空间分辨基因表达谱是理解组织结构和功能的关键。然而,空间转录组学(ST)分析技术缺乏单细胞分辨率,需要与单细胞RNA测序(scRNA-seq)信息相结合,以对空间索引数据集进行解卷积。利用这两种数据类型的优势,我们开发了SPOTlight,这是一种计算工具,能够将ST与scRNA-seq数据整合,以推断复杂组织中细胞类型和状态的位置。SPOTlight以种子非负矩阵分解(NMF)回归为核心,使用细胞类型标记基因和非负最小二乘法(NNLS)进行初始化,随后对ST捕获位置(斑点)进行解卷积。通过模拟不同的参考数量和质量,我们证实了即使使用测序较浅或规模较小的scRNA-seq参考数据集,预测准确率也很高。对小鼠大脑进行SPOTlight解卷积能够正确映射皮质层的细微神经元细胞状态以及海马体的既定结构。在人类胰腺癌中,我们成功分割了患者切片,并进一步精细映射了正常和肿瘤细胞状态。在外部单细胞胰腺肿瘤参考数据上进行训练后,我们进一步绘制了临床相关和肿瘤特异性免疫细胞状态的定位图,这是其灵活应用范围及其在数字病理学中未来潜力的一个示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0e/8136778/6a3c3cd0df0f/gkab043gra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验