Suppr超能文献

药物警戒人工智能/机器学习的行业视角。

Industry Perspective on Artificial Intelligence/Machine Learning in Pharmacovigilance.

机构信息

GlaxoSmithKline, Global Safety, Upper Providence, PA, USA.

AbbVie, Pharmacovigilance and Patient Safety Business Process Office, North Chicago, IL, USA.

出版信息

Drug Saf. 2022 May;45(5):439-448. doi: 10.1007/s40264-022-01164-5. Epub 2022 May 17.

Abstract

TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.

摘要

TransCelerate 报告了 2019 年、2020 年和 2021 年成员公司(MC)关于在药物警戒流程中使用智能自动化的调查结果。MC 在整个病例报告处理过程中增加了智能自动化解决方案的数量和实施程度,特别是采用基于规则的自动化技术,如机器人流程自动化、查询和工作流,这在 3 年的调查中从规划阶段发展到试点阶段再到实施阶段。各公司仍然对其他技术(如机器学习(ML)和人工智能)非常感兴趣,因为这些技术可以对数据和决策进行类似人类的解释,而不仅仅是自动化任务。智能自动化解决方案通常与一种以上的技术结合使用,同时用于同一病例报告处理步骤。实施智能自动化解决方案的挑战包括寻找/拥有 ML 模型的适当训练数据,以及对协调监管指导的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30e6/9114066/cea5752db108/40264_2022_1164_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验