Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
Curr Biol. 2022 Jun 20;32(12):2581-2595.e6. doi: 10.1016/j.cub.2022.04.053. Epub 2022 May 16.
Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases.
自噬是一种保守的、多步骤的过程,用于捕获自噬体中的蛋白水解货物进行溶酶体降解。自噬途径能够清除神经退行性疾病中积累的毒性蛋白,这证明了其具有疾病修饰潜力。然而,神经元对传统的诱导自噬方法反应甚微,限制了开发用于神经退行性疾病的治疗性自噬调节剂的努力。神经元中自噬诱导能力差的决定因素,以及神经元和其他细胞类型对自噬刺激的敏感性差异程度,尚未完全确定。因此,我们在成纤维细胞、诱导多能干细胞(iPSC)和 iPSC 衍生神经元(iNeurons)中采样新生转录物的合成和稳定性,从而揭示了肌管相关磷酸酶 5(MTMR5)编码转录物的神经元特异性稳定性。MTMR5 是一种自噬抑制剂,它与其结合伙伴 MTMR2 一起作用,去磷酸化对于自噬起始和自噬体成熟至关重要的磷酸肌醇。我们发现 MTMR5 是 iNeurons 和未分化的 iPSC 中抑制自噬所必需且充分的。使用光学脉冲标记来可视化活细胞内内源性编码蛋白的周转率,我们观察到 MTMR5 或 MTMR2 的敲低,但不是不相关的磷酸酶 MTMR9,显著增强了神经元中 TDP-43 的降解,TDP-43 是几种神经退行性疾病中涉及的自噬底物。我们的研究结果因此建立了神经元内在自噬的调节机制,并可针对特定细胞类型清除与疾病相关的蛋白质。这样,我们的结果不仅揭示了神经元生物学和蛋白质稳定性的新方面,还阐明了一种调节神经元自噬的策略,这对多种神经退行性疾病具有很高的治疗潜力。