Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
Cell Mol Life Sci. 2023 Mar 17;80(4):95. doi: 10.1007/s00018-023-04739-2.
Aggregation of the RNA-binding protein, TDP-43, is the unifying hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43-related neurodegeneration involves multiple changes to normal physiological TDP-43, which undergoes nuclear depletion, cytoplasmic mislocalisation, post-translational modification, and aberrant liquid-liquid phase separation, preceding inclusion formation. Along with toxic cytoplasmic aggregation, concurrent depletion and dysfunction of normal nuclear TDP-43 in cells with TDP-43 pathology is likely a key potentiator of neurodegeneration, but is not well understood. To define processes driving TDP-43 dysfunction, we used CRISPR/Cas9-mediated fluorescent tagging to investigate how disease-associated stressors and pathological TDP-43 alter abundance, localisation, self-assembly, aggregation, solubility, and mobility dynamics of normal nuclear TDP-43 over time in live cells. Oxidative stress stimulated liquid-liquid phase separation of endogenous TDP-43 into droplet-like puncta, or spherical shell-like anisosomes. Further, nuclear RNA-binding-ablated or acetylation-mimicking TDP-43 readily sequestered and depleted free normal nuclear TDP-43 into dynamic anisosomes, in which recruited endogenous TDP-43 proteins remained soluble and highly mobile. Large, phosphorylated inclusions formed by nuclear or cytoplasmic aggregation-prone TDP-43 mutants also caused sequestration, but rendered endogenous TDP-43 immobile and insoluble, indicating pathological transition. These findings suggest that RNA-binding deficiency and post-translational modifications including acetylation exacerbate TDP-43 aggregation and dysfunction by driving sequestration, mislocalisation, and depletion of normal nuclear TDP-43 in neurodegenerative diseases.
TDP-43 蛋白的聚集是肌萎缩侧索硬化症和额颞叶痴呆的统一标志性特征。TDP-43 相关的神经退行性变涉及到正常生理 TDP-43 的多种变化,其经历核耗竭、细胞质定位异常、翻译后修饰和异常的液-液相分离,随后形成包含体。除了有毒的细胞质聚集外,TDP-43 病理学细胞中正常核 TDP-43 的同时耗竭和功能障碍很可能是神经退行性变的一个关键增强因素,但目前了解甚少。为了确定导致 TDP-43 功能障碍的过程,我们使用 CRISPR/Cas9 介导的荧光标记来研究疾病相关应激源和病理性 TDP-43 如何随时间改变正常核 TDP-43 的丰度、定位、自组装、聚集、可溶性和迁移动力学。氧化应激刺激内源性 TDP-43 液-液相分离成液滴样点状或球形壳样各向异性体。此外,核 RNA 结合缺失或乙酰化模拟 TDP-43 容易将游离的正常核 TDP-43 募集到动态各向异性体中,其中募集的内源性 TDP-43 蛋白保持可溶性和高度迁移性。核或细胞质聚集倾向的 TDP-43 突变体形成的大的、磷酸化的包含体也会导致募集,但使内源性 TDP-43 不可移动和不溶,表明发生了病理性转变。这些发现表明,RNA 结合缺陷和包括乙酰化在内的翻译后修饰通过驱动正常核 TDP-43 的募集、定位异常和耗竭,加剧了 TDP-43 的聚集和功能障碍,从而导致神经退行性疾病。