Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland.
Langmuir. 2022 May 31;38(21):6561-6570. doi: 10.1021/acs.langmuir.2c00204. Epub 2022 May 17.
Combining amphiphilic block copolymers and phospholipids opens new opportunities for the preparation of artificial membranes. The chemical versatility and mechanical robustness of polymers together with the fluidity and biocompatibility of lipids afford hybrid membranes with unique properties that are of great interest in the field of bioengineering. Owing to its straightforwardness, the solvent-assisted method (SA) is particularly attractive for obtaining solid-supported membranes. While the SA method was first developed for lipids and very recently extended to amphiphilic block copolymers, its potential to develop hybrid membranes has not yet been explored. Here, we tailor the SA method to prepare solid-supported polymer-lipid hybrid membranes by combining a small library of amphiphilic diblock copolymers poly(dimethyl siloxane)-poly(2-methyl-2-oxazoline) and poly(butylene oxide)--poly(glycidol) with phospholipids commonly found in cell membranes including 1,2-dihexadecanoyl--glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine, sphingomyelin, and 1,2-dioleoyl--glycero-3-phosphoethanolamine--(glutaryl). The optimization of the conditions under which the SA method was applied allowed for the formation of hybrid polymer-lipid solid-supported membranes. The real-time formation and morphology of these hybrid membranes were evaluated using a combination of quartz crystal microbalance and atomic force microscopy. Depending on the type of polymer-lipid combination, significant differences in membrane coverage, formation of domains, and quality of membranes were obtained. The use of the SA method for a rapid and controlled formation of solid-supported hybrid membranes provides the basis for developing customized artificial hybrid membranes.
两亲嵌段共聚物与磷脂的结合为人工膜的制备开辟了新的机会。聚合物的化学多功能性和机械坚固性以及脂质的流动性和生物相容性为具有独特性质的混合膜提供了条件,这些性质在生物工程领域具有重要意义。由于其简单性,溶剂辅助方法(SA)对于获得固载膜特别有吸引力。尽管 SA 方法最初是为脂质开发的,并且最近刚刚扩展到两亲嵌段共聚物,但它在开发混合膜方面的潜力尚未得到探索。在这里,我们通过结合一小部分两亲性二嵌段共聚物聚(二甲基硅氧烷)-聚(2-甲基-2-恶唑啉)和聚(丁烯氧化物)-聚(缩水甘油)与细胞膜中常见的磷脂,例如 1,2-二硬脂酰基甘油-3-磷酸胆碱、1-棕榈酰基-2-油酰基甘油-3-磷酸乙醇胺、鞘磷脂和 1,2-二油酰基甘油-3-磷酸乙醇胺-(谷氨酸),调整 SA 方法来制备固载聚合物-脂质混合膜。优化 SA 方法应用的条件允许形成混合聚合物-脂质固载膜。使用石英晶体微天平(QCM)和原子力显微镜(AFM)的组合评估了这些混合膜的实时形成和形态。根据聚合物-脂质组合的类型,在膜覆盖率、域形成和膜质量方面都获得了显著差异。SA 方法可用于快速且受控地形成固载混合膜,为开发定制化的人工混合膜提供了基础。