Chang Chieh-Yu, Chen Chun-Chi, Tsai Ming-Lung, Hsieh Ming-Jer, Chen Tien-Hsing, Chen Shao-Wei, Chang Shang-Hung, Chu Pao-Hsien, Hsieh I-Chang, Wen Ming-Shien, Chen Dong-Yi
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and Chang Gung University College of Medicine, Taoyuan, Taiwan.
Division of Cardiology, New Taipei Municipal TuCheng Hospital, Taiwan, and Chang Gung University College of Medicine, Taoyuan, Taiwan.
JACC Asia. 2024 Oct 29;4(12):956-968. doi: 10.1016/j.jacasi.2024.09.003. eCollection 2024 Dec.
Few studies have incorporated echocardiography and laboratory data to predict clinical outcomes in heart failure with preserved ejection fraction (HFpEF).
This study aimed to use machine learning to find predictors of heart failure (HF) hospitalization and cardiovascular (CV) death in HFpEF.
From the Chang Gung Research Database in Taiwan, 6,092 HFpEF patients (2,898 derivation, 3,194 validation) identified between 2008 and 2017 were followed until 2019. A random survival forest model, using 58 variables, was developed to predict the composite outcome of HF hospitalization and CV death.
During 2.9-year follow-up, 37.7% of derivation and 36.0% of validation cohort patients experienced HF hospitalization or CV death. The study identified 15 predictive indicators, including age ≥65 years, B-type natriuretic peptide level ≥600 pg/mL, left atrium size ≥46 mm, atrial fibrillation, frequency of HF hospitalization within 3 years, body mass index <30 kg/m, moderate or severe mitral regurgitation, left ventricular (LV) posterior wall thickness of <10 or ≥13 mm, dysnatremia, LV end-diastolic dimension of <40 or ≥56 mm, uric acid level ≥7 mg/dL, triglyceride level of <70 or ≥200 mg/dL, blood urea nitrogen level ≥20 mg/dL, interventricular septum thickness of <11 or ≥20 mm, and glycated hemoglobin (HbA) level of <6% or ≥8%. The random survival forest model demonstrated robust external generalizability with an 86.9% area under curve in validation.
Machine learning identified 15 predictors of HF hospitalization and CV death in HFpEF patients, helping doctors identify high-risk individuals for tailored treatment.
很少有研究将超声心动图和实验室数据结合起来预测射血分数保留的心力衰竭(HFpEF)患者的临床结局。
本研究旨在使用机器学习来寻找HFpEF患者心力衰竭(HF)住院和心血管(CV)死亡的预测因素。
从台湾长庚研究数据库中,选取2008年至2017年间确定的6092例HFpEF患者(2898例用于推导,3194例用于验证),随访至2019年。使用58个变量建立随机生存森林模型,以预测HF住院和CV死亡的复合结局。
在2.9年的随访期间,推导队列中的37.7%和验证队列中的36.0%的患者经历了HF住院或CV死亡。该研究确定了15个预测指标,包括年龄≥65岁、B型利钠肽水平≥600 pg/mL、左心房大小≥46 mm、心房颤动、3年内HF住院频率、体重指数<30 kg/m²、中度或重度二尖瓣反流、左心室(LV)后壁厚度<10或≥13 mm、电解质紊乱、LV舒张末期内径<40或≥56 mm、尿酸水平≥7 mg/dL、甘油三酯水平<70或≥200 mg/dL、血尿素氮水平≥20 mg/dL、室间隔厚度<11或≥20 mm以及糖化血红蛋白(HbA)水平<6%或≥8%。随机生存森林模型在验证中显示出强大的外部通用性,曲线下面积为86.9%。
机器学习确定了HFpEF患者HF住院和CV死亡的15个预测因素,有助于医生识别高危个体以进行个性化治疗。