Awais Muhammad, Raza Mohsin, Singh Nishant, Bashir Kiran, Manzoor Umar, Islam Saif Ul, Rodrigues Joel J P C
Department of Computer ScienceEdge Hill University Ormskirk L39 4QP U.K.
School of PsychologyUniversity of Birmingham Birmingham B15 2TT U.K.
IEEE Internet Things J. 2020 Dec 10;8(23):16863-16871. doi: 10.1109/JIOT.2020.3044031. eCollection 2021 Dec.
Human emotions are strongly coupled with physical and mental health of any individual. While emotions exbibit complex physiological and biological phenomenon, yet studies reveal that physiological signals can be used as an indirect measure of emotions. In unprecedented circumstances alike the coronavirus (Covid-19) outbreak, a remote Internet of Things (IoT) enabled solution, coupled with AI can interpret and communicate emotions to serve substantially in healthcare and related fields. This work proposes an integrated IoT framework that enables wireless communication of physiological signals to data processing hub where long short-term memory (LSTM)-based emotion recognition is performed. The proposed framework offers real-time communication and recognition of emotions that enables health monitoring and distance learning support amidst pandemics. In this study, the achieved results are very promising. In the proposed IoT protocols (TS-MAC and R-MAC), ultralow latency of 1 ms is achieved. R-MAC also offers improved reliability in comparison to state of the art. In addition, the proposed deep learning scheme offers high performance ([Formula: see text]-score) of 95%. The achieved results in communications and AI match the interdependency requirements of deep learning and IoT frameworks, thus ensuring the suitability of proposed work in distance learning, student engagement, healthcare, emotion support, and general wellbeing.
人类情绪与任何个体的身心健康紧密相连。虽然情绪表现出复杂的生理和生物现象,但研究表明生理信号可被用作情绪的间接度量。在诸如冠状病毒(COVID-19)爆发这样的前所未有的情况下,一种基于物联网(IoT)的远程解决方案,结合人工智能,可以解读和传达情绪,在医疗保健及相关领域发挥重要作用。这项工作提出了一个集成的物联网框架,该框架能够将生理信号无线传输到数据处理中心,在那里进行基于长短期记忆(LSTM)的情绪识别。所提出的框架提供情绪的实时通信和识别,能够在大流行期间实现健康监测和远程学习支持。在本研究中,取得的结果非常有前景。在所提出的物联网协议(TS-MAC和R-MAC)中,实现了1毫秒的超低延迟。与现有技术相比,R-MAC还具有更高的可靠性。此外,所提出的深度学习方案具有95%的高性能([公式:见正文]得分)。在通信和人工智能方面取得的结果符合深度学习和物联网框架的相互依存要求,从而确保了所提出的工作在远程学习、学生参与度、医疗保健、情绪支持和总体福祉方面的适用性。