Pulli Elmo P, Silver Eero, Kumpulainen Venla, Copeland Anni, Merisaari Harri, Saunavaara Jani, Parkkola Riitta, Lähdesmäki Tuire, Saukko Ekaterina, Nolvi Saara, Kataja Eeva-Leena, Korja Riikka, Karlsson Linnea, Karlsson Hasse, Tuulari Jetro J
Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.
Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.
Front Neurosci. 2022 May 2;16:874062. doi: 10.3389/fnins.2022.874062. eCollection 2022.
Pediatric neuroimaging is a quickly developing field that still faces important methodological challenges. Pediatric images usually have more motion artifact than adult images. The artifact can cause visible errors in brain segmentation, and one way to address it is to manually edit the segmented images. Variability in editing and quality control protocols may complicate comparisons between studies. In this article, we describe in detail the semiautomated segmentation and quality control protocol of structural brain images that was used in FinnBrain Birth Cohort Study and relies on the well-established FreeSurfer v6.0 and ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) consortium tools. The participants were typically developing 5-year-olds [ = 134, 5.34 (SD 0.06) years, 62 girls]. Following a dichotomous quality rating scale for inclusion and exclusion of images, we explored the quality on a region of interest level to exclude all regions with major segmentation errors. The effects of manual edits on cortical thickness values were relatively minor: less than 2% in all regions. Supplementary Material cover registration and additional edit options in FreeSurfer and comparison to the computational anatomy toolbox (CAT12). Overall, we conclude that despite minor imperfections FreeSurfer can be reliably used to segment cortical metrics from T1-weighted images of 5-year-old children with appropriate quality assessment in place. However, custom templates may be needed to optimize the results for the subcortical areas. Through visual assessment on a level of individual regions of interest, our semiautomated segmentation protocol is hopefully helpful for investigators working with similar data sets, and for ensuring high quality pediatric neuroimaging data.
儿科神经影像学是一个快速发展的领域,但仍面临着重要的方法学挑战。儿科图像通常比成人图像有更多的运动伪影。这种伪影会在脑部分割中导致明显的误差,解决方法之一是手动编辑分割后的图像。编辑和质量控制协议的差异可能会使不同研究之间的比较变得复杂。在本文中,我们详细描述了用于芬兰脑出生队列研究的结构性脑图像的半自动分割和质量控制协议,该协议依赖于成熟的FreeSurfer v6.0和ENIGMA(通过元分析增强神经影像遗传学)联盟工具。参与者通常为发育正常的5岁儿童[ = 134名,年龄5.34(标准差0.06)岁,62名女孩]。遵循用于图像纳入和排除的二分质量评级量表,我们在感兴趣区域水平上探索质量,以排除所有存在主要分割错误的区域。手动编辑对皮质厚度值的影响相对较小:所有区域均小于2%。补充材料涵盖了FreeSurfer中的配准和其他编辑选项,并与计算解剖工具箱(CAT12)进行了比较。总体而言,我们得出结论,尽管存在一些小瑕疵,但在有适当质量评估的情况下,FreeSurfer可以可靠地用于从5岁儿童的T1加权图像中分割皮质指标。然而,可能需要定制模板来优化皮质下区域的结果。通过在个体感兴趣区域水平上的视觉评估,我们的半自动分割协议有望对处理类似数据集的研究人员有所帮助,并有助于确保高质量的儿科神经影像数据。