Suppr超能文献

特定的 N-聚糖在躯体感觉树突模式形成过程中调节细胞外黏附复合物。

Specific N-glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning.

机构信息

Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

EMBO Rep. 2022 Jul 5;23(7):e54163. doi: 10.15252/embr.202154163. Epub 2022 May 19.

Abstract

N-glycans are molecularly diverse sugars borne by over 70% of proteins transiting the secretory pathway and have been implicated in protein folding, stability, and localization. Mutations in genes important for N-glycosylation result in congenital disorders of glycosylation that are often associated with intellectual disability. Here, we show that structurally distinct N-glycans regulate an extracellular protein complex involved in the patterning of somatosensory dendrites in Caenorhabditis elegans. Specifically, aman-2/Golgi alpha-mannosidase II, a conserved key enzyme in the biosynthesis of specific N-glycans, regulates the activity of the Menorin adhesion complex without obviously affecting the protein stability and localization of its components. AMAN-2 functions cell-autonomously to allow for decoration of the neuronal transmembrane receptor DMA-1/LRR-TM with the correct set of high-mannose/hybrid/paucimannose N-glycans. Moreover, distinct types of N-glycans on specific N-glycosylation sites regulate DMA-1/LRR-TM receptor function, which, together with three other extracellular proteins, forms the Menorin adhesion complex. In summary, specific N-glycan structures regulate dendrite patterning by coordinating the activity of an extracellular adhesion complex, suggesting that the molecular diversity of N-glycans can contribute to developmental specificity in the nervous system.

摘要

N-糖链是 70%以上穿越分泌途径的蛋白质所携带的分子多样性糖,参与蛋白质折叠、稳定性和定位。参与 N-糖基化的基因发生突变会导致先天性糖基化紊乱,这些紊乱通常与智力障碍有关。在这里,我们表明,结构不同的 N-糖链调节参与秀丽隐杆线虫体感树突模式形成的细胞外蛋白质复合物。具体来说,aman-2/高尔基 α-甘露糖苷酶 II 是特定 N-糖生物合成中的一种保守关键酶,它调节 Menorin 粘附复合物的活性,而不会明显影响其成分的蛋白质稳定性和定位。AMAN-2 以细胞自主的方式起作用,使神经元跨膜受体 DMA-1/LRR-TM 被正确的高甘露糖/杂合/低甘露糖 N-糖链修饰。此外,特定 N-糖基化位点上的不同类型的 N-糖链调节 DMA-1/LRR-TM 受体功能,该受体与其他三个细胞外蛋白一起形成 Menorin 粘附复合物。总之,特定的 N-糖链结构通过协调细胞外粘附复合物的活性来调节树突的模式形成,这表明 N-糖链的分子多样性可以为神经系统的发育特异性做出贡献。

相似文献

1
Specific N-glycans regulate an extracellular adhesion complex during somatosensory dendrite patterning.
EMBO Rep. 2022 Jul 5;23(7):e54163. doi: 10.15252/embr.202154163. Epub 2022 May 19.
2
Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites.
Curr Biol. 2016 Sep 12;26(17):2379-87. doi: 10.1016/j.cub.2016.07.008. Epub 2016 Jul 21.
5
Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans.
Cell. 2013 Oct 10;155(2):308-20. doi: 10.1016/j.cell.2013.08.058.
6
7
A deletion in the golgi alpha-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild-type N-glycan structures.
J Biol Chem. 2006 Sep 22;281(38):28265-77. doi: 10.1074/jbc.M602878200. Epub 2006 Jul 24.
8
SAX-7 and menorin light the path for dendrite morphogenesis.
Cell. 2013 Oct 10;155(2):269-71. doi: 10.1016/j.cell.2013.09.029.
9
Axon-Dependent Patterning and Maintenance of Somatosensory Dendritic Arbors.
Dev Cell. 2019 Jan 28;48(2):229-244.e4. doi: 10.1016/j.devcel.2018.12.015. Epub 2019 Jan 17.
10
The conserved oligomeric Golgi complex is required for fucosylation of N-glycans in Caenorhabditis elegans.
Glycobiology. 2012 Jun;22(6):863-75. doi: 10.1093/glycob/cws053. Epub 2012 Feb 28.

引用本文的文献

1
N-glycan core tri-fucosylation requires Golgi α-mannosidase III activity that impacts nematode growth and behavior.
J Biol Chem. 2024 Dec;300(12):107944. doi: 10.1016/j.jbc.2024.107944. Epub 2024 Oct 29.
2
Dendrite morphogenesis in Caenorhabditis elegans.
Genetics. 2024 Jun 5;227(2). doi: 10.1093/genetics/iyae056.
3
Analysis of Caenorhabditis Protein Glycosylation.
Methods Mol Biol. 2024;2762:123-138. doi: 10.1007/978-1-0716-3666-4_8.
4
Convertase-dependent regulation of membrane-tethered and secreted ligands tunes dendrite adhesion.
Development. 2023 Sep 15;150(18). doi: 10.1242/dev.201208. Epub 2023 Sep 18.

本文引用的文献

1
Molecular topography of an entire nervous system.
Cell. 2021 Aug 5;184(16):4329-4347.e23. doi: 10.1016/j.cell.2021.06.023. Epub 2021 Jul 7.
2
Molecular mechanisms that mediate dendrite morphogenesis.
Curr Top Dev Biol. 2021;142:233-282. doi: 10.1016/bs.ctdb.2020.12.008. Epub 2021 Feb 17.
3
CATP-8/P5A ATPase Regulates ER Processing of the DMA-1 Receptor for Dendritic Branching.
Cell Rep. 2020 Sep 8;32(10):108101. doi: 10.1016/j.celrep.2020.108101.
5
Parallel Processing of Two Mechanosensory Modalities by a Single Neuron in C. elegans.
Dev Cell. 2019 Dec 2;51(5):617-631.e3. doi: 10.1016/j.devcel.2019.10.008. Epub 2019 Nov 14.
6
Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans.
Dev Biol. 2019 Jul 1;451(1):53-67. doi: 10.1016/j.ydbio.2019.04.002. Epub 2019 Apr 17.
7
Lessons from Worm Dendritic Patterning.
Annu Rev Neurosci. 2019 Jul 8;42:365-383. doi: 10.1146/annurev-neuro-072116-031437. Epub 2019 Apr 2.
8
N-glycomic Complexity in Anatomical Simplicity: as a Non-model Nematode?
Front Mol Biosci. 2019 Mar 12;6:9. doi: 10.3389/fmolb.2019.00009. eCollection 2019.
9
Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis.
Nat Commun. 2019 Mar 21;10(1):1311. doi: 10.1038/s41467-019-09222-w.
10
Congenital disorders of glycosylation.
Ann Transl Med. 2018 Dec;6(24):477. doi: 10.21037/atm.2018.10.45.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验