文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在缓慢和快速流行疫情中选择感染性特征,以及 SARS-CoV-2 变体的出现。

Selection for infectivity profiles in slow and fast epidemics, and the rise of SARS-CoV-2 variants.

机构信息

Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS INSERM, PSL Research University, Paris, France.

Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris, UMR2000, CNRS, Paris, France.

出版信息

Elife. 2022 May 19;11:e75791. doi: 10.7554/eLife.75791.


DOI:10.7554/eLife.75791
PMID:35587653
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9205634/
Abstract

Evaluating the characteristics of emerging SARS-CoV-2 variants of concern is essential to inform pandemic risk assessment. A variant may grow faster if it produces a larger number of secondary infections ("R advantage") or if the timing of secondary infections (generation time) is better. So far, assessments have largely focused on deriving the R advantage assuming the generation time was unchanged. Yet, knowledge of both is needed to anticipate the impact. Here, we develop an analytical framework to investigate the contribution of the R advantage and generation time to the growth advantage of a variant. It is known that selection on a variant with larger R increases with levels of transmission in the community. We additionally show that variants conferring earlier transmission are more strongly favored when the historical strains have fast epidemic growth, while variants conferring later transmission are more strongly favored when historical strains have slow or negative growth. We develop these conceptual insights into a new statistical framework to infer both the R advantage and generation time of a variant. On simulated data, our framework correctly estimates both parameters when it covers time periods characterized by different epidemiological contexts. Applied to data for the Alpha and Delta variants in England and in Europe, we find that Alpha confers a+54% [95% CI, 45-63%] R advantage compared to previous strains, and Delta +140% [98-182%] compared to Alpha, and mean generation times are similar to historical strains for both variants. This work helps interpret variant frequency dynamics and will strengthen risk assessment for future variants of concern.

摘要

评估新出现的 SARS-CoV-2 关注变种的特征对于告知大流行风险评估至关重要。如果变种产生更多的二次感染(“R 优势”),或者二次感染的时间(世代时间)更好,那么它可能会生长得更快。到目前为止,评估主要集中在假设世代时间不变的情况下推导出 R 优势。然而,需要同时了解这两个因素才能预测其影响。在这里,我们开发了一个分析框架来研究 R 优势和世代时间对变种生长优势的贡献。众所周知,选择具有更大 R 的变体的选择随着社区中传播水平的增加而增加。我们还表明,当历史菌株具有快速流行增长时,传播较早的变种更受青睐,而当历史菌株具有缓慢或负增长时,传播较晚的变种更受青睐。我们将这些概念见解发展为一个新的统计框架,以推断变种的 R 优势和世代时间。在模拟数据中,当我们的框架涵盖具有不同流行病学背景的时间段时,它可以正确地估计这两个参数。将其应用于英格兰和欧洲的 Alpha 和 Delta 变体的数据,我们发现与之前的菌株相比,Alpha 赋予+54%[95%置信区间,45-63%]的 R 优势,而与 Alpha 相比,Delta 赋予+140%[98-182%]的 R 优势,两种变体的平均世代时间与历史菌株相似。这项工作有助于解释变体频率动态,并将为未来关注的变体的风险评估提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/335f3326c008/elife-75791-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/fad6d8151122/elife-75791-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/999c02276e35/elife-75791-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/44070bd7fac9/elife-75791-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/337fc35e1294/elife-75791-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/6521772550d9/elife-75791-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/5b3ce975e2bb/elife-75791-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/981eddf3332a/elife-75791-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/4fc87e29dd30/elife-75791-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/9ab432e22e62/elife-75791-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/a6e6d892e473/elife-75791-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/1eb4db351d28/elife-75791-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/335f3326c008/elife-75791-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/fad6d8151122/elife-75791-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/999c02276e35/elife-75791-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/44070bd7fac9/elife-75791-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/337fc35e1294/elife-75791-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/6521772550d9/elife-75791-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/5b3ce975e2bb/elife-75791-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/981eddf3332a/elife-75791-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/4fc87e29dd30/elife-75791-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/9ab432e22e62/elife-75791-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/a6e6d892e473/elife-75791-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/1eb4db351d28/elife-75791-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e51d/9205634/335f3326c008/elife-75791-fig5-figsupp3.jpg

相似文献

[1]
Selection for infectivity profiles in slow and fast epidemics, and the rise of SARS-CoV-2 variants.

Elife. 2022-5-19

[2]
Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacton Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021-Oct 2022).

Viruses. 2023-9-15

[3]
Taxonium, a web-based tool for exploring large phylogenetic trees.

Elife. 2022-11-15

[4]
Superspreaders drive the largest outbreaks of hospital onset COVID-19 infections.

Elife. 2021-8-24

[5]
Estimation and worldwide monitoring of the effective reproductive number of SARS-CoV-2.

Elife. 2022-8-8

[6]
High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing.

Elife. 2021-4-26

[7]
Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis.

BMC Med. 2023-9-29

[8]
Has Omicron Changed the Evolution of the Pandemic?

JMIR Public Health Surveill. 2022-1-31

[9]
Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols.

Elife. 2021-4-16

[10]
SARS-CoV2 variant-specific replicating RNA vaccines protect from disease following challenge with heterologous variants of concern.

Elife. 2022-2-22

引用本文的文献

[1]
SARS-CoV-2 epidemiology, kinetics, and evolution: A narrative review.

Virulence. 2025-12

[2]
Evolution of virulence in emerging epidemics: from theory to experimental evolution and back.

Virus Evol. 2024-10-15

[3]
Genome-wide phylodynamic approach reveals the epidemic dynamics of the main subtype circulating in France.

Microb Genom. 2023-7

[4]
Viral target and metabolism-based rationale for combined use of recently authorized small molecule COVID-19 medicines: Molnupiravir, nirmatrelvir, and remdesivir.

Fundam Clin Pharmacol. 2023-8

[5]
Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK.

Front Cell Infect Microbiol. 2022

[6]
The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants.

J Virol. 2022-10-12

[7]
Effectiveness of rapid SARS-CoV-2 genome sequencing in supporting infection control for hospital-onset COVID-19 infection: Multicentre, prospective study.

Elife. 2022-9-13

[8]
The importance of the generation interval in investigating dynamics and control of new SARS-CoV-2 variants.

J R Soc Interface. 2022-6

[9]
Scaling SARS-CoV-2 wastewater concentrations to population estimates of infection.

Sci Rep. 2022-3-3

本文引用的文献

[1]
Viral Dynamics of SARS-CoV-2 Variants in Vaccinated and Unvaccinated Persons.

N Engl J Med. 2021-12-23

[2]
Serial Interval and Transmission Dynamics during SARS-CoV-2 Delta Variant Predominance, South Korea.

Emerg Infect Dis. 2022-2

[3]
Monitoring key epidemiological parameters of SARS-CoV-2 transmission.

Nat Med. 2021-11

[4]
SARS-CoV-2 variants of concern are associated with lower RT-PCR amplification cycles between January and March 2021 in France.

Int J Infect Dis. 2021-12

[5]
Transmission Dynamics of an Outbreak of the COVID-19 Delta Variant B.1.617.2 - Guangdong Province, China, May-June 2021.

China CDC Wkly. 2021-7-2

[6]
Characterisation of vaccine breakthrough infections of SARS-CoV-2 Delta and Alpha variants and within-host viral load dynamics in the community, France, June to July 2021.

Euro Surveill. 2021-9

[7]
Serial intervals in SARS-CoV-2 B.1.617.2 variant cases.

Lancet. 2021-9-4

[8]
SARS-CoV-2 viral dynamics in infections with Alpha and Beta variants of concern in the French community.

J Infect. 2022-1

[9]
The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic.

Curr Biol. 2021-7-26

[10]
Rapid spread of the SARS-CoV-2 Delta variant in some French regions, June 2021.

Euro Surveill. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索