University of Edinburgh, Scotland, UK.
Togetherall (formerly Big White Wall), UK.
J Affect Disord. 2022 Aug 15;311:284-293. doi: 10.1016/j.jad.2022.05.058. Epub 2022 May 16.
Online mental health platforms can improve access to, and use of, mental health support for young people who may find it difficult to engage with face-to-face delivery.
We modelled predictors of engagement and symptom change in adolescent users of the Togetherall (formerly "Big White Wall") anonymous digital mental health peer-support platform.
We report a retrospective analysis of longitudinal user data from UK 16-18 year Togetherall users, referred from mental health services (N = 606). Baseline demographics were reported for participants who logged anxiety and depression measures. Number of log-ins, mean session duration, total usage time, number of guided support courses and self-help materials accessed were our usage metrics. Participant characteristics and symptoms were used to predict engagement. For n = 245 users with symptom measures at >1 timepoint we modelled the effect of predictors on symptom scores.
Mean logins was 5.11 and mean usage time was 64.22 mins. Participants with one log-in represented 33.5% of the sample. Total time accessing Togetherall predicated greater usage of self-help materials and courses. Females made greater use of materials and courses than males. In a subsample, higher baseline depression and anxiety, longer total usage time and mean session duration predicted final depression scores, whereas higher baseline depression and anxiety and greater accessed self-help materials predicted lower final anxiety scores.
A naturalistic design was used and symptom modelling should be interpreted with caution.
Findings suggest adolescents can engage with the Togetherall platform. Baseline symptoms and characteristics can inform user engagement with digital platforms.
在线心理健康平台可以改善年轻人获取和使用心理健康支持的机会,这些年轻人可能难以接受面对面的服务。
我们构建了青少年用户在匿名数字心理健康互助平台 Togetherall(原名“Big White Wall”)中的使用和症状变化的预测模型。
我们报告了对来自英国心理健康服务机构转诊的 16-18 岁 Togetherall 用户的纵向用户数据进行的回顾性分析(N=606)。记录了登录焦虑和抑郁测量的参与者的基线人口统计学特征。登录次数、平均会话持续时间、总使用时间、访问的指导支持课程和自助材料的数量是我们的使用指标。参与者的特征和症状用于预测参与度。对于 n=245 名在>1 个时间点有症状测量的用户,我们构建了预测因子对症状评分的影响模型。
平均登录次数为 5.11,平均使用时间为 64.22 分钟。只有一次登录的参与者占样本的 33.5%。总的 Togetherall 使用时间预测了更多的自助材料和课程的使用。女性比男性更多地使用材料和课程。在一个子样本中,较高的基线抑郁和焦虑、较长的总使用时间和平均会话持续时间预测了最终的抑郁评分,而较高的基线抑郁和焦虑以及更多地使用自助材料预测了最终的焦虑评分较低。
使用了自然主义设计,对症状建模的解释应谨慎。
研究结果表明青少年可以使用 Togetherall 平台。基线症状和特征可以为数字平台的用户参与提供信息。