School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
School of Ocean Mechatronics, Xiamen Ocean Vocational College, Xiamen, 361100, China.
Sci Rep. 2022 May 19;12(1):8373. doi: 10.1038/s41598-022-12355-6.
Air quality index (AQI) is an essential measure of air pollution evaluation, which describes the air pollution degree and its impact on health, so the accurate prediction of AQI is significant. This paper presents an AQI prediction model based on Convolution Neural Networks (CNN) and Improved Long Short-Term Memory (ILSTM), named CNN-ILSTM. ILSTM deletes the output gate in LSTM and improves its input gate and forget gate, and introduces a Conversion Information Module (CIM) to prevent supersaturation in the learning process. ILSTM realizes efficient learning of historical data, improves prediction accuracy, and reduces the training time. CNN extracts the eigenvalues of input data effectively. This paper uses air quality data from 00:00 on January 1, 2017, to 23:00 on June 30, 2021, in Shijiazhuang City, Hebei Province, China, as experimental data sets, and compares this model with eight prediction models: SVR, RFR, MLP, LSTM, GRU, ILSTM, CNN-LSTM, and CNN-GRU to prove the validity and accuracy of CNN-ILSTM prediction model. The experimental results show the MAE of CNN-ILSTM is 8.4134, MSE is 202.1923, R is 0.9601, and the training time is 85.3 s. In this experiment, the performance of this model performs better than other models.
空气质量指数(AQI)是空气污染评价的重要指标,描述了空气污染程度及其对健康的影响,因此准确预测 AQI 具有重要意义。本文提出了一种基于卷积神经网络(CNN)和改进的长短期记忆网络(ILSTM)的 AQI 预测模型,命名为 CNN-ILSTM。ILSTM 删除了 LSTM 中的输出门,并改进了其输入门和遗忘门,并引入了转换信息模块(CIM),以防止学习过程中的过饱和。ILSTM 实现了对历史数据的高效学习,提高了预测精度,并减少了训练时间。CNN 有效地提取输入数据的特征值。本文使用了 2017 年 1 月 1 日 00:00 至 2021 年 6 月 30 日 23:00 期间河北省石家庄市的空气质量数据作为实验数据集,将该模型与 8 种预测模型进行比较:SVR、RFR、MLP、LSTM、GRU、ILSTM、CNN-LSTM 和 CNN-GRU,以证明 CNN-ILSTM 预测模型的有效性和准确性。实验结果表明,CNN-ILSTM 的 MAE 为 8.4134,MSE 为 202.1923,R 为 0.9601,训练时间为 85.3 s。在本实验中,该模型的性能优于其他模型。