Department of Computer Science, University of Kentucky, Lexington, KY.
Institute for Biomedical Informatics, University of Kentucky, Lexington, KY.
AMIA Annu Symp Proc. 2021 Jan 25;2020:1100-1109. eCollection 2020.
Computed Tomography (CT) plays an important role in lung malignancy diagnostics, therapy assessment, and facilitating precision medicine delivery. However, the use of personalized imaging protocols poses a challenge in large-scale cross-center CT image radiomic studies. We present an end-to-end solution called STAN-CT for CT image standardization and normalization, which effectively reduces discrepancies in image features caused by using different imaging protocols or using different CT scanners with the same imaging protocol. STAN-CT consists oftwo components: 1)a Generative Adversarial Networks (GAN) model where a latent-feature-based loss function is adopted to learn the data distribution of standard images within a few rounds of generator training, and 2) an automatic DICOM reconstruction pipeline with systematic image quality control that ensures the generation ofhigh-quality standard DICOM images. Experimental results indicate that the training efficiency and model performance of STAN-CT have been significantly improved compared to the state-of-the-art CT image standardization and normalization algorithms.
计算机断层扫描(CT)在肺癌的诊断、治疗评估和精准医疗的实施中具有重要作用。然而,在大规模跨中心 CT 图像放射组学研究中,使用个性化的成像方案带来了挑战。我们提出了一种名为 STAN-CT 的端到端解决方案,用于 CT 图像的标准化和归一化,它可以有效地减少因使用不同的成像方案或使用相同的成像方案但不同的 CT 扫描仪而导致的图像特征差异。STAN-CT 由两个组件组成:1)一个生成对抗网络(GAN)模型,该模型采用基于潜在特征的损失函数,在几轮生成器训练中学习标准图像的数据分布;2)一个具有系统图像质量控制的自动 DICOM 重建管道,以确保生成高质量的标准 DICOM 图像。实验结果表明,与最先进的 CT 图像标准化和归一化算法相比,STAN-CT 的训练效率和模型性能有了显著提高。