Suppr超能文献

STAN-CT:基于生成对抗网络的 CT 图像标准化。

STAN-CT: Standardizing CT Image using Generative Adversarial Networks.

机构信息

Department of Computer Science, University of Kentucky, Lexington, KY.

Institute for Biomedical Informatics, University of Kentucky, Lexington, KY.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:1100-1109. eCollection 2020.

Abstract

Computed Tomography (CT) plays an important role in lung malignancy diagnostics, therapy assessment, and facilitating precision medicine delivery. However, the use of personalized imaging protocols poses a challenge in large-scale cross-center CT image radiomic studies. We present an end-to-end solution called STAN-CT for CT image standardization and normalization, which effectively reduces discrepancies in image features caused by using different imaging protocols or using different CT scanners with the same imaging protocol. STAN-CT consists oftwo components: 1)a Generative Adversarial Networks (GAN) model where a latent-feature-based loss function is adopted to learn the data distribution of standard images within a few rounds of generator training, and 2) an automatic DICOM reconstruction pipeline with systematic image quality control that ensures the generation ofhigh-quality standard DICOM images. Experimental results indicate that the training efficiency and model performance of STAN-CT have been significantly improved compared to the state-of-the-art CT image standardization and normalization algorithms.

摘要

计算机断层扫描(CT)在肺癌的诊断、治疗评估和精准医疗的实施中具有重要作用。然而,在大规模跨中心 CT 图像放射组学研究中,使用个性化的成像方案带来了挑战。我们提出了一种名为 STAN-CT 的端到端解决方案,用于 CT 图像的标准化和归一化,它可以有效地减少因使用不同的成像方案或使用相同的成像方案但不同的 CT 扫描仪而导致的图像特征差异。STAN-CT 由两个组件组成:1)一个生成对抗网络(GAN)模型,该模型采用基于潜在特征的损失函数,在几轮生成器训练中学习标准图像的数据分布;2)一个具有系统图像质量控制的自动 DICOM 重建管道,以确保生成高质量的标准 DICOM 图像。实验结果表明,与最先进的 CT 图像标准化和归一化算法相比,STAN-CT 的训练效率和模型性能有了显著提高。

相似文献

6
LGAN: Lung segmentation in CT scans using generative adversarial network.LGAN:使用生成对抗网络进行 CT 扫描中的肺部分割。
Comput Med Imaging Graph. 2021 Jan;87:101817. doi: 10.1016/j.compmedimag.2020.101817. Epub 2020 Nov 16.

本文引用的文献

1
A Style-Based Generator Architecture for Generative Adversarial Networks.基于风格的生成对抗网络生成器架构。
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.
3
10
Introduction to the DICOM standard.医学数字成像和通信(DICOM)标准简介。
Eur Radiol. 2002 Apr;12(4):920-7. doi: 10.1007/s003300101100. Epub 2001 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验