Suppr超能文献

TomoGAN:使用生成对抗网络的低剂量同步加速器X射线断层扫描:讨论

TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion.

作者信息

Liu Zhengchun, Bicer Tekin, Kettimuthu Rajkumar, Gursoy Doga, De Carlo Francesco, Foster Ian

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2020 Mar 1;37(3):422-434. doi: 10.1364/JOSAA.375595.

Abstract

Synchrotron-based x-ray tomography is a noninvasive imaging technique that allows for reconstructing the internal structure of materials at high spatial resolutions from tens of micrometers to a few nanometers. In order to resolve sample features at smaller length scales, however, a higher radiation dose is required. Therefore, the limitation on the achievable resolution is set primarily by noise at these length scales. We present TomoGAN, a denoising technique based on generative adversarial networks, for improving the quality of reconstructed images for low-dose imaging conditions. We evaluate our approach in two photon-budget-limited experimental conditions: (1) sufficient number of low-dose projections (based on Nyquist sampling), and (2) insufficient or limited number of high-dose projections. In both cases, the angular sampling is assumed to be isotropic, and the photon budget throughout the experiment is fixed based on the maximum allowable radiation dose on the sample. Evaluation with both simulated and experimental datasets shows that our approach can significantly reduce noise in reconstructed images, improving the structural similarity score of simulation and experimental data from 0.18 to 0.9 and from 0.18 to 0.41, respectively. Furthermore, the quality of the reconstructed images with filtered back projection followed by our denoising approach exceeds that of reconstructions with the simultaneous iterative reconstruction technique, showing the computational superiority of our approach.

摘要

基于同步加速器的X射线断层扫描是一种非侵入性成像技术,它能够以从几十微米到几纳米的高空间分辨率重建材料的内部结构。然而,为了在更小的长度尺度上分辨样品特征,需要更高的辐射剂量。因此,可实现分辨率的限制主要由这些长度尺度下的噪声决定。我们提出了TomoGAN,一种基于生成对抗网络的去噪技术,用于在低剂量成像条件下提高重建图像的质量。我们在两种光子预算受限的实验条件下评估我们的方法:(1)足够数量的低剂量投影(基于奈奎斯特采样),以及(2)高剂量投影数量不足或有限。在这两种情况下,假设角度采样是各向同性的,并且整个实验中的光子预算基于样品上的最大允许辐射剂量固定。对模拟数据集和实验数据集的评估表明,我们的方法可以显著降低重建图像中的噪声,将模拟数据和实验数据的结构相似性分数分别从0.18提高到0.9和从0.18提高到0.41。此外,采用我们的去噪方法对滤波反投影重建图像进行处理后的质量超过了采用同步迭代重建技术的重建质量,显示了我们方法的计算优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验