National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia.
School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia.
Sensors (Basel). 2022 Apr 29;22(9):3400. doi: 10.3390/s22093400.
The IETF Routing Over Low power and Lossy network (ROLL) working group defined IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to facilitate efficient routing in IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). Limited resources of 6LoWPAN nodes make it challenging to secure the environment, leaving it vulnerable to threats and security attacks. Machine Learning (ML) and Deep Learning (DL) approaches have shown promise as effective and efficient mechanisms for detecting anomalous behaviors in RPL-based 6LoWPAN. Therefore, this paper systematically reviews and critically analyzes the research landscape on ML, DL, and combined ML-DL approaches applied to detect attacks in RPL networks. In addition, this study examined existing datasets designed explicitly for the RPL network. This work collects relevant studies from five major databases: Google Scholar, Springer Link, Scopus, Science Direct, and IEEE Xplore digital library. Furthermore, 15,543 studies, retrieved from January 2016 to mid-2021, were refined according to the assigned inclusion criteria and designed research questions resulting in 49 studies. Finally, a conclusive discussion highlights the issues and challenges in the existing studies and proposes several future research directions.
IETF 低功耗有损网络 (ROLL) 工作组定义了用于低功耗有损网络的 IPv6 路由协议 (RPL),以促进 IPv6 在低功耗无线个人区域网络 (6LoWPAN) 中的高效路由。6LoWPAN 节点的资源有限,这使得安全环境变得具有挑战性,使其容易受到威胁和安全攻击。机器学习 (ML) 和深度学习 (DL) 方法已被证明是检测基于 RPL 的 6LoWPAN 中异常行为的有效和高效机制。因此,本文系统地回顾和批判性地分析了应用于检测 RPL 网络攻击的 ML、DL 和组合 ML-DL 方法的研究现状。此外,本研究还检查了专门为 RPL 网络设计的现有数据集。这项工作从五个主要数据库:Google Scholar、Springer Link、Scopus、Science Direct 和 IEEE Xplore 数字图书馆中收集了相关研究。此外,根据指定的纳入标准和设计的研究问题,从 2016 年 1 月到 2021 年年中,从 15543 项研究中进行了精炼,最终得到了 49 项研究。最后,一个结论性的讨论强调了现有研究中的问题和挑战,并提出了几个未来的研究方向。