Department of Computer Science & Engineering, Jaypee University of Information Technology, Waknaghat, District Solan, Himachal Pradesh, 173234, India.
Comput Biol Med. 2022 Jul;146:105624. doi: 10.1016/j.compbiomed.2022.105624. Epub 2022 May 17.
Heart disease is the major cause of non-communicable and silent death worldwide. Heart diseases or cardiovascular diseases are classified into four types: coronary heart disease, heart failure, congenital heart disease, and cardiomyopathy. It is vital to diagnose heart disease early and accurately in order to avoid further injury and save patients' lives. As a result, we need a system that can predict cardiovascular disease before it becomes a critical situation. Machine learning has piqued the interest of researchers in the field of medical sciences. For heart disease prediction, researchers implement a variety of machine learning methods and approaches. In this work, to the best of our knowledge, we have used the dataset from IEEE Data Port which is one of the online available largest datasets for cardiovascular diseases individuals. The dataset isa combination of Hungarian, Cleveland, Long Beach VA, Switzerland &Statlog datasets with important features such as Maximum Heart Rate Achieved, Serum Cholesterol, Chest Pain Type, Fasting blood sugar, and so on. To assess the efficacy and strength of the developed model, several performance measures are used, such as ROC, AUC curve, specificity, F1-score, sensitivity, MCC, and accuracy. In this study, we have proposed a framework with a stacked ensemble classifier using several machine learning algorithms including ExtraTrees Classifier, Random Forest, XGBoost, and so on. Our proposed framework attained an accuracy of 92.34% which is higher than the existing literature.
心脏病是全球非传染性和无声死亡的主要原因。心脏病或心血管疾病分为四类:冠心病、心力衰竭、先天性心脏病和心肌病。为了避免进一步的伤害和拯救患者的生命,及早准确地诊断心脏病至关重要。因此,我们需要一个能够在心血管疾病发展为危急情况之前进行预测的系统。机器学习已经引起了医学领域研究人员的兴趣。对于心脏病预测,研究人员实施了各种机器学习方法和方法。在这项工作中,据我们所知,我们使用了来自 IEEE Data Port 的数据集,这是心血管疾病个体可用的最大在线数据集之一。该数据集是匈牙利、克利夫兰、长滩 VA、瑞士和 Statlog 数据集的组合,具有重要特征,如最大心率、血清胆固醇、胸痛类型、空腹血糖等。为了评估所开发模型的功效和强度,使用了几种性能指标,如 ROC、AUC 曲线、特异性、F1 分数、灵敏度、MCC 和准确性。在这项研究中,我们提出了一个使用多个机器学习算法(包括 ExtraTrees 分类器、随机森林、XGBoost 等)的堆叠集成分类器框架。我们提出的框架达到了 92.34%的准确率,高于现有文献。