Suppr超能文献

用于组织发色团体积评估的超像素光谱解混框架:一种光声数据驱动方法。

Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach.

作者信息

Grasso Valeria, Willumeit-Rӧmer Regine, Jose Jithin

机构信息

FUJIFILM VisualSonics, Amsterdam, the Netherlands.

Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel, Kiel, Germany.

出版信息

Photoacoustics. 2022 May 11;26:100367. doi: 10.1016/j.pacs.2022.100367. eCollection 2022 Jun.

Abstract

The assessment of tissue chromophores at a volumetric scale is vital for an improved diagnosis and treatment of a large number of diseases. Spectral photoacoustic imaging (sPAI) co-registered with high-resolution ultrasound (US) is an innovative technology that has a great potential for clinical translation as it can assess the volumetric distribution of the tissue components. Conventionally, to detect and separate the chromophores from sPAI, an input of the expected tissue absorption spectra is required. However, in pathological conditions, the prediction of the absorption spectra is difficult as it can change with respect to the physiological state. Besides, this conventional approach can also be hampered due to spectral coloring, which is a prominent distortion effect that induces spectral changes at depth. Here, we are proposing a novel data-driven framework that can overcome all these limitations and provide an improved assessment of the tissue chromophores. We have developed a superpixel spectral unmixing (SPAX) approach that can detect the most and less prominent absorber spectra and their volumetric distribution without any user interactions. Within the SPAX framework, we have also implemented an advanced spectral coloring compensation approach by utilizing US image segmentation and Monte Carlo simulations, based on a predefined library of optical properties. The framework has been tested on tissue-mimicking phantoms and also on healthy animals. The obtained results show enhanced specificity and sensitivity for the detection of tissue chromophores. To our knowledge, this is a unique framework that accounts for the spectral coloring and provides automated detection of tissue spectral signatures at a volumetric scale, which can open many possibilities for translational research.

摘要

在体积尺度上评估组织发色团对于改善多种疾病的诊断和治疗至关重要。与高分辨率超声(US)共同配准的光谱光声成像(sPAI)是一项创新技术,具有很大的临床转化潜力,因为它可以评估组织成分的体积分布。传统上,为了从sPAI中检测和分离发色团,需要输入预期的组织吸收光谱。然而,在病理条件下,吸收光谱的预测很困难,因为它会随生理状态而变化。此外,这种传统方法还可能受到光谱着色的阻碍,光谱着色是一种显著的失真效应,会在深度上引起光谱变化。在此,我们提出了一种新颖的数据驱动框架,该框架可以克服所有这些限制,并提供对组织发色团的改进评估。我们开发了一种超像素光谱解混(SPAX)方法,该方法可以在无需任何用户交互的情况下检测最突出和较不突出的吸收体光谱及其体积分布。在SPAX框架内,我们还基于预定义的光学特性库,通过利用US图像分割和蒙特卡罗模拟,实现了一种先进的光谱着色补偿方法。该框架已在组织模拟体模和健康动物上进行了测试。获得的结果表明,在检测组织发色团方面具有更高的特异性和灵敏度。据我们所知,这是一个独特的框架,它考虑了光谱着色,并在体积尺度上提供组织光谱特征的自动检测,这可以为转化研究开辟许多可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b11/9120071/bfa18f7e56b4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验