Department of Medicine and Epidemiology, University of California-Davis, Davis, CA, USA.
School of Veterinary Medicine, and Department of Mathematics, University of California-Davis, Davis, CA, USA.
J Vet Diagn Invest. 2022 Jul;34(4):612-621. doi: 10.1177/10406387221096781. Epub 2022 May 21.
Leptospirosis is a life-threatening, zoonotic disease with various clinical presentations, including renal injury, hepatic injury, pancreatitis, and pulmonary hemorrhage. With prompt recognition of the disease and treatment, 90% of infected dogs have a positive outcome. Therefore, rapid, early diagnosis of leptospirosis is crucial. Testing for -specific serum antibodies using the microscopic agglutination test (MAT) lacks sensitivity early in the disease process, and diagnosis can take >2 wk because of the need to demonstrate a rise in titer. We applied machine-learning algorithms to clinical variables from the first day of hospitalization to create machine-learning prediction models (MLMs). The models incorporated patient signalment, clinicopathologic data (CBC, serum chemistry profile, and urinalysis = blood work [BW] model), with or without a MAT titer obtained at patient intake (=BW + MAT model). The models were trained with data from 91 dogs with confirmed leptospirosis and 322 dogs without leptospirosis. Once trained, the models were tested with a cohort of dogs not included in the model training (9 leptospirosis-positive and 44 leptospirosis-negative dogs), and performance was assessed. Both models predicted leptospirosis in the test set with 100% sensitivity (95% CI: 70.1-100%). Specificity was 90.9% (95% CI: 78.8-96.4%) and 93.2% (95% CI: 81.8-97.7%) for the BW and BW + MAT models, respectively. Our MLMs outperformed traditional acute serologic screening and can provide accurate early screening for the probable diagnosis of leptospirosis in dogs.
钩端螺旋体病是一种具有多种临床表现的危及生命的人畜共患病,包括肾损伤、肝损伤、胰腺炎和肺出血。如果能及时识别疾病并进行治疗,90%的感染犬会有良好的预后。因此,快速、早期诊断钩端螺旋体病至关重要。使用显微镜凝集试验(MAT)检测特异性血清抗体在疾病早期缺乏敏感性,并且由于需要证明滴度升高,诊断可能需要>2 周。我们应用机器学习算法对入院第一天的临床变量进行分析,创建了机器学习预测模型(MLM)。这些模型纳入了患者的特征、临床病理数据(CBC、血清化学分析和尿液分析=血液工作[BW]模型),以及在患者入院时获得的 MAT 滴度(BW+MAT 模型)。这些模型使用了 91 只确诊为钩端螺旋体病的犬和 322 只未感染钩端螺旋体病的犬的数据进行训练。一旦训练完成,我们用未包含在模型训练中的一组犬(9 只钩端螺旋体病阳性犬和 44 只钩端螺旋体病阴性犬)进行了模型测试,并评估了其性能。两个模型在测试集中对钩端螺旋体病的预测均具有 100%的敏感性(95%CI:70.1-100%)。BW 和 BW+MAT 模型的特异性分别为 90.9%(95%CI:78.8-96.4%)和 93.2%(95%CI:81.8-97.7%)。我们的 MLM 优于传统的急性血清学筛查,可以为犬钩端螺旋体病的可能诊断提供准确的早期筛查。