Suppr超能文献

基于任务相似性迁移学习的口服生物利用度特性预测

Oral bioavailability property prediction based on task similarity transfer learning.

作者信息

Zeng Chen, Xu Chengcheng, Liu Yingxu, Jiang Yunya, Zheng Lidan, Liu Yang, Zhang Yanmin, Chen Yadong, Liu Haichun, Gu Rui

机构信息

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

出版信息

Mol Divers. 2025 Sep 10. doi: 10.1007/s11030-025-11345-w.

Abstract

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly. Recently, using AI models to predict ADMET properties has become a new and effective method. However, this method has some data dependence problems. To address this issue, we combine physicochemical properties with graph-based deep learning methods to improve HOB prediction, providing an efficient and interpretable alternative to traditional experimental and computational approaches for ADMET property studies in data-scarce scenarios. We propose a similarity-guided transfer learning framework, Task Similarity-guided Transfer Learning based on Molecular Graphs (TS-GTL), which includes a deep learning model, PGnT (pKa Graph-based Knowledge-driven Transformer). PGnT incorporates common molecular descriptors as external knowledge to guide molecular graph representation, leveraging GNNs and Transformer encoders to enhance feature extraction. Additionally, we introduce MoTSE to quantify the similarity between physicochemical properties and HOB. Notably, training with data pretrained model on logD properties showed the best performance in transfer learning. TS-GTL also outperformed machine learning algorithms and deep learning predictive tools, underscoring the critical role of task similarity in transfer learning.

摘要

药物吸收对药代动力学有显著影响。准确预测人体口服生物利用度(HOB)对于优化候选药物和提高临床成功率至关重要。基于实验的传统方法是获取HOB的常用途径,但实验方法既耗时又昂贵。最近,使用人工智能模型预测药物的吸收、分布、代谢、排泄及毒性(ADMET)性质已成为一种新的有效方法。然而,这种方法存在一些数据依赖问题。为了解决这个问题,我们将物理化学性质与基于图的深度学习方法相结合,以改进HOB预测,为数据稀缺场景下ADMET性质研究的传统实验和计算方法提供一种高效且可解释的替代方案。我们提出了一种相似性引导的迁移学习框架,即基于分子图的任务相似性引导迁移学习(TS-GTL),它包括一个深度学习模型,即基于pKa图的知识驱动变压器(PGnT)。PGnT将常见的分子描述符作为外部知识纳入,以指导分子图表示,利用图神经网络(GNN)和变压器编码器增强特征提取。此外,我们引入了分子性质与口服生物利用度相似度估计(MoTSE)来量化物理化学性质与HOB之间的相似性。值得注意的是,在logD性质上使用数据预训练模型进行训练在迁移学习中表现出最佳性能。TS-GTL也优于机器学习算法和深度学习预测工具,突出了任务相似性在迁移学习中的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验